Skip to main content
Log in

Cellulose nanofibers from curaua fibers

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Curaua nanofibers extracted under different conditions were investigated. The raw fibers were mercerized with NaOH solutions; they were then submitted to acid hydrolysis using three different types of acids (H2SO4, a mixture of H2SO4/HCl and HCl). The fibers were analyzed by cellulose, lignin and hemicellulose contents; viscometry, X-ray diffraction (XRD) and thermal stability by thermogravimetric analysis (TG). The nanofibers were morphologically characterized by transmission electron microscopy (TEM) and their surface charges in suspensions were estimated by Zeta-potential. Their degree of polymerization (DP) was characterized by viscometry, crystallinity by XRD and thermal stability by TG. Increasing the NaOH solution concentration in the mercerization, there was a decrease of hemicellulose and lignin contents and consequently an increase of cellulose content. XRD patterns presented changes in the crystal structure from cellulose I to cellulose II when the fibers were mercerized with 17.5% NaOH solution. All curaua nanofibers presented a rod-like shape, an average diameter (D) of 6–10 nm and length (L) of 80–170 nm, with an aspect ratio (L/D) of around 13–17. The mercerization of fibers with NaOH solutions influenced the crystallinity index and thermal stability of the resulting nanofibers. The fibers mercerized with NaOH solution 17.5% resulted in more crystalline nanofibers, but thermally less stable and inferior DP. The aggregation state increases with the amount of HCl introduced into the extraction, due to the decrease of surface charges (as verified by Zeta Potential analysis). However, this release presented nanofibers with better thermal stability than those whose acid hydrolysis was carried out using only H2SO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. (101)−2θ = 14.7° for cellulose type I (Na5 fibers) and 2θ = 12.1° for cellulose type II (Na17.5 fibers);

    \( \left( {10\bar{1}} \right) \)−2θ = 16.8° for cellulose type I (Na5 fibers) and 2θ = 20.0° for cellulose type II (Na17.5 fibers);

    (002)−2θ = 21.9° for cellulose type I (Na5 fibers) and 2θ = 22.7° for cellulose type II (Na17.5 fibers).

References

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surface A 142:75–82

    Article  CAS  Google Scholar 

  • Borysiak S, Doczekalska B (2005) X-ray diffraction study of pine Wood treated with NaOH. Fibres Text East Eur 13(5):87–89

    CAS  Google Scholar 

  • Borysiak S, Garbarczyk J (2003) Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerization. Fibres Text East Eur 11(5):104–106

    Google Scholar 

  • Chen HZ, Chen JZ, Liu J, Li ZH (1999) Studies on the steam explosion of wheat straw. I-Effects of the processing conditions for steam explosion of wheat straw and analysis of the process. J Cellulose Sci Technol 7(2):60–67

    CAS  Google Scholar 

  • D’Almeida ALFS, Barreto DW, Calado V, D’Almeida JRM (2008) Thermal analysis of less common lignocellulose fibers. J Therm Anal Calorim 91(2):405–408

    Article  Google Scholar 

  • Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330

    CAS  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and Surface Issues in Cellulose and Nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  • Gomes A, Matsuo T, Goda K, Ohgi J (2007) Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos Part A-Appl S 38:1811–1820

    Article  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites, review. BioResources 3(3):929–980

    Google Scholar 

  • Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463–468

    Article  CAS  Google Scholar 

  • Leão AL, Caraschi JC, Tan IH (2000) Curaua fiber—A tropical natural fibers from amazon potencial and applications in composites. In: Frollini E, Leão AL, Mattoso LHC (eds) Natural Polymers and Agrofibers Composites. São Carlos, Brazil, pp 257–272

  • Lima MMS, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties and applications. Macromol Rapid Comm 25:771–787

    Article  Google Scholar 

  • Lindgren T, Edlund U, Iversen T (1995) A multivariate characterization of crystal transformations of cellulose. Cellulose 2:273–288

    Article  CAS  Google Scholar 

  • Monteiro SN, Aquino RCMP, Lopes FPD, Carvalho EA, D’Almeida JRM (2006) Comportamento Mecânico e Características estruturais de compósitos poliméricos reforçados com fibras contínuas e alinhadas de Curauá. Revista Matéria 11(3):197–203

    Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Pääkko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    Article  Google Scholar 

  • Paula MP, Lacerda TM, Frollini E (2008) Sisal cellulose acetates obtained from heterogeneous reactions. Express Polymer Letters 2(6):423–428

    Article  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  CAS  Google Scholar 

  • Silva RV, Aquino EMF (2008) Curaua fiber: a new alternative to polymeric composites. J Reinf Plast Comp 27(1):103–112

    Article  Google Scholar 

  • Silva R, Haraguchi SK, Muniz EC, Rubira AF (2009) Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Quim Nova 32(3):661–671

    CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materias: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Souza SF, Leão AL, Cai JH, Wu C, Sain M, Cherian BM (2010) Nanocellulose from curava fibers and their Nanocomposites. Mol Cryst Liq Cryst 522:42[342]–52[352]

    Article  Google Scholar 

  • Tomczak F, Satyanarayana KG, Sydenstricker THD (2007) Studies on lignocellulosic fibers of Brazil: Part III–Morphology and properties of Brazilian Curauá fibers. Compos Part A-Appl S 38:2227–2236

    Article  Google Scholar 

  • Trindade WG, Hoareau W, Megiatto JD, Razera IAT, Castellan A, Frollini E (2005) Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites. Biomacromolecules 6:2485–2496

    Article  CAS  Google Scholar 

  • Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohyd Polym 69:607–611

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by CNPq, FAPESP (Process No. 07/50863-4), FINEP and EMBRAPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Corrêa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrêa, A.C., de Morais Teixeira, E., Pessan, L.A. et al. Cellulose nanofibers from curaua fibers. Cellulose 17, 1183–1192 (2010). https://doi.org/10.1007/s10570-010-9453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9453-3

Keywords

Navigation