Skip to main content

Advertisement

Log in

Diagnostic and prognostic application of positron emission tomography in breast imaging: emerging uses and the role of PET in monitoring treatment response

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) is an imaging modality that using radiotracers, permits real-time dynamic monitoring of biologic processes such as cell metabolic behavior and proliferation, and has proven useful as a research tool for understanding tumor biology. While it does not have a well-defined role in breast cancer for the purposes of screening, diagnosis, or prognosis, emerging PET technologies and uses could expand the applications of PET in breast cancer. Positron emission mammography may provide an alternative adjunct imaging modality for the screening and diagnosis of high-risk patients unable to tolerate MRI. The development of radiotracers with the ability to measure hormonal activity could provide a non-invasive way to assess hormone receptor status and functionality. Finally, the role of PET technologies in monitoring early treatment response may prove particularly useful to research involving new therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Upadhyay M, Samal J, Kandpal M, Singh OV, Vivekanandan (2013) The Warburg effect: insights from the past decade. Pharmacol Ther 137(3):318–330

  2. Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, Siegel BA, Bradley JD (2006) 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 47(11):1808–1812

    PubMed  Google Scholar 

  3. Keyes JW Jr (1995) SUV: standard uptake or silly useless value? J Nucl Med 36(10):1836–1839

    PubMed  Google Scholar 

  4. Feuardent J (2004) SM, de Dreuille O. Reliability of SUV estimates in FDG PET as a function of acquisition and processing protocols. IEEE Trans Nucl Sci, Foehrenbach H

    Google Scholar 

  5. Freudenberg LS, Frilling A, Kuhl H, Muller SP, Jentzen W, Bockisch A, Antoch G (2007) Dual-modality FDG-PET/CT in follow-up of patients with recurrent iodine-negative differentiated thyroid cancer. Eur Radiol 17(12):3139–3147

    Article  PubMed  Google Scholar 

  6. Freudenberg LS, Rosenbaum SJ, Beyer T, Bockisch A, Antoch G (2007) PET versus PET/CT dual-modality imaging in evaluation of lung cancer. Radiol Clin North Am 45(4):639–644, v

    Google Scholar 

  7. Lal G, Fairchild T, Howe JR, Weigel RJ, Sugg SL, Menda Y PET-CT scans in recurrent or persistent differentiated thyroid cancer: is there added utility beyond conventional imaging?. Surgery 148(6):1082–1089; discussion 1089–1090

  8. Finkelstein SE, Grigsby PW, Siegel BA, Dehdashti F, Moley JF, Hall BL (2008) Combined [18F]fluorodeoxyglucose positron emission tomography and computed tomography (FDG-PET/CT) for detection of recurrent, 131I-negative thyroid cancer. Ann Surg Oncol 15(1):286–292

    Article  PubMed  Google Scholar 

  9. Delbeke D, Schoder H, Martin WH, Wahl RL (2009) Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med 39(5):308–340

    Article  PubMed  Google Scholar 

  10. Kluetz PG, Meltzer CC, Villemagne VL, Kinahan PE, Chander S, Martinelli MA, Townsend DW (2000) Combined PET/CT imaging in oncology. Impact on patient management. Clin Positron Imaging 3(6):223–230

    Article  PubMed  Google Scholar 

  11. Schoder H, Larson SM, Yeung HW (2004) PET/CT in oncology: integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J Nucl Med 45(Suppl 1):72S–81S

    PubMed  Google Scholar 

  12. Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW (2009) Impact of time-of-flight on PET tumor detection. J Nucl Med 50(8):1315–1323

    Article  PubMed  Google Scholar 

  13. Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, Conti M, Panin VY, Kadrmas DJ, Townsend DW (2010) An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med 51(2):237–245

    Article  PubMed  Google Scholar 

  14. El Fakhri G, Surti S, Trott CM, Scheuermann J, Karp JS (2011) Improvement in lesion detection with whole-body oncologic time-of-flight PET. J Nucl Med 52(3):347–353

    Article  PubMed  Google Scholar 

  15. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW (2011) Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol 56(8):2375–2389

    Article  PubMed  CAS  Google Scholar 

  16. Levin Klausen T, Hogild Keller S, Vinter Olesen O, Aznar M, Andersen FL (2012) Innovations in PET/CT. Q J Nucl Med Mol Imaging 56(3):268–279

    Google Scholar 

  17. Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, Abe K, Sasaki M (2012) Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med 53(11):1716–1722

    Google Scholar 

  18. Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34(3):414–419

    PubMed  CAS  Google Scholar 

  19. Kubota K, Ishiwata K, Kubota R, Yamada S, Tada M, Sato T, Ido T (1991) Tracer feasibility for monitoring tumor radiotherapy: a quadruple tracer study with fluorine-18-fluorodeoxyglucose or fluorine-18-fluorodeoxyuridine, L-[methyl-14C]methionine, [6-3H]thymidine, and gallium-67. J Nucl Med 32(11):2118–2123

    PubMed  CAS  Google Scholar 

  20. Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, Tamahashi N (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 36(3):484–492

    PubMed  CAS  Google Scholar 

  21. Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Nishikawa M, Ohata K, Torii K, Morino M et al (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery–in malignant glioma. Ann Nucl Med 18(4):291–296

    Article  PubMed  CAS  Google Scholar 

  22. Okamoto S, Shiga T, Hattori N, Kubo N, Takei T, Katoh N, Sawamura Y, Nishijima K, Kuge Y, Tamaki N (2011) Semiquantitative analysis of C-11 methionine PET may distinguish brain tumor recurrence from radiation necrosis even in small lesions. Ann Nucl Med 25(3):213–220

    Article  PubMed  CAS  Google Scholar 

  23. Aki T, Nakayama N, Yonezawa S, Takenaka S, Miwa K, Asano Y, Shinoda J, Yano H, Iwama T (2012) Evaluation of brain tumors using dynamic 11C-methionine-PET. J Neurooncol 109(1):115–122

    Article  PubMed  Google Scholar 

  24. Singhal T, Narayanan TK, Jacobs MP, Bal C, Mantil JC (2012) 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med 53(11):1709–1715

    Google Scholar 

  25. Miwa K, Matsuo M, Shinoda J, Aki T, Yonezawa S, Ito T, Asano Y, Yamada M, Yokoyama K, Yamada J et al. (2012) Clinical value of [(11)C]methionine PET for stereotactic radiation therapy with intensity modulated radiation therapy to metastatic brain tumors. Int J Radiat Oncol Biol Phys 84(5):1139–1144

    Google Scholar 

  26. Mankoff DA, Dehdashti F, Shields AF (2000) Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia 2(1–2):71–88

    Article  PubMed  CAS  Google Scholar 

  27. Vanderhoek M, Juckett MB, Perlman SB, Nickles RJ, Jeraj R (2011) Early assessment of treatment response in patients with AML using [(18)F]FLT-PET imaging. Leuk Res 35(3):310–316

    Article  PubMed  Google Scholar 

  28. Giammarile F, Billotey C, Lombard-Bohas C, Le Bars D, Bournaud C, Masson S, Walter T, Houzard C, Scoazec JY, Hervieu V et al (2011) 18F-FLT and 18F-FDG positron emission tomography for the imaging of advanced well-differentiated gastro-entero-pancreatic endocrine tumours. Nucl Med Commun 32(2):91–97

    Article  PubMed  Google Scholar 

  29. Yamamoto Y, Ono Y, Aga F, Kawai N, Kudomi N, Nishiyama Y (2012) Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med

  30. Richard SD, Bencherif B, Edwards RP, Elishaev E, Krivak TC, Mountz JM, DeLoia JA (2011) Noninvasive assessment of cell proliferation in ovarian cancer using [18F]3’deoxy-3-fluorothymidine positron emission tomography/computed tomography imaging. Nucl Med Biol 38(4):485–491

    Article  PubMed  CAS  Google Scholar 

  31. Herrmann K, Buck AK, Schuster T, Rudelius M, Wester HJ, Graf N, Scheuerer C, Peschel C, Schwaiger M, Dechow T et al (2011) A pilot study to evaluate 3’-deoxy-3’-18F-fluorothymidine pet for initial and early response imaging in mantle cell lymphoma. J Nucl Med 52(12):1898–1902

    Article  PubMed  CAS  Google Scholar 

  32. Benz MR, Czernin J, Allen-Auerbach MS, Dry SM, Sutthiruangwong P, Spick C, Radu C, Weber WA, Tap WD, Eilber FC (2012) 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: a pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer 118(12):3135–3144

    Article  PubMed  Google Scholar 

  33. Idema AJ, Hoffmann AL, Boogaarts HD, Troost EG, Wesseling P, Heerschap A, van der Graaf WT, Grotenhuis JA, Oyen WJ (2012) 3′-Deoxy-3′-18F-Fluorothymidine PET-Derived Proliferative Volume Predicts Overall Survival in High-Grade Glioma Patients. J Nucl Med

  34. Kishino T, Hoshikawa H, Nishiyama Y, Yamamoto Y, Mori N (2012) Usefulness of 3’-Deoxy-3’-18F-fluorothymidine PET for predicting early response to chemoradiotherapy in head and neck cancer. J Nucl Med 53(10):1521–1527

    Article  PubMed  CAS  Google Scholar 

  35. Barwick T, Bencherif B, Mountz JM, Avril N (2009) Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation. Nucl Med Commun 30(12):908–917

    Article  PubMed  CAS  Google Scholar 

  36. Contractor K, Aboagye EO, Jacob J, Challapalli A, Coombes RC, Stebbing J (2012) Monitoring early response to taxane therapy in advanced breast cancer with circulating tumor cells and [(18)F] 3-deoxy-3-fluorothymidine PET: a pilot study. Biomark Med 6(2):231–233

    Article  PubMed  CAS  Google Scholar 

  37. Contractor KB, Kenny LM, Stebbing J, Rosso L, Ahmad R, Jacob J, Challapalli A, Turkheimer F, Al-Nahhas A, Sharma R et al (2011) [18F]-3’Deoxy-3’-fluorothymidine positron emission tomography and breast cancer response to docetaxel. Clin Can Res 17(24):7664–7672

    Article  CAS  Google Scholar 

  38. PROTOCOL ACRIN (American College of Radiology Imaging Network) 6688 http://www.acrin.org/TabID/597/Default.aspx). Accessed March 2013

  39. Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S, Gown A, Link JM, Tewson T, Krohn KA (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49(3):367–374

    Article  PubMed  Google Scholar 

  40. Verhagen A, Studeny M, Luurtsema G, Visser GM, De Goeij CC, Sluyser M, Nieweg OE, Van der Ploeg E, Go KG, Vaalburg W (1994) Metabolism of a [18F]fluorine labeled progestin (21-[18F]fluoro-16 alpha-ethyl-19-norprogesterone) in humans: a clue for future investigations. Nucl Med Biol 21(7):941–952

    Article  PubMed  CAS  Google Scholar 

  41. Jonson SD, Welch MJ (1998) PET imaging of breast cancer with fluorine-18 radiolabeled estrogens and progestins. Q J Nucl Med 42(1):8–17

    PubMed  CAS  Google Scholar 

  42. Ojasoo T, Dore JC, Gilbert J, Raynaud JP (1988) Binding of steroids to the progestin and glucocorticoid receptors analyzed by correspondence analysis. J Med Chem 31(6):1160–1169

    Article  PubMed  CAS  Google Scholar 

  43. Zhou HB, Lee JH, Mayne CG, Carlson KE, Katzenellenbogen JA (2010) Imaging progesterone receptor in breast tumors: synthesis and receptor binding affinity of fluoroalkyl-substituted analogues of tanaproget. J Med Chem 53(8):3349–3360

    Article  PubMed  CAS  Google Scholar 

  44. Lee JH, Zhou HB, Dence CS, Carlson KE, Welch MJ, Katzenellenbogen JA (2010) Development of [F-18]fluorine-substituted Tanaproget as a progesterone receptor imaging agent for positron emission tomography. Bioconjug Chem 21(6):1096–1104

    Article  PubMed  CAS  Google Scholar 

  45. Bevers TB, Anderson BO, Bonaccio E, Buys S, Daly MB, Dempsey PJ, Farrar WB, Fleming I, Garber JE, Harris RE et al (2009) NCCN clinical practice guidelines in oncology: breast cancer screening and diagnosis. J Natl Compr Canc Netw 7(10):1060–1096

    PubMed  Google Scholar 

  46. Reddy DH, Mendelson EB (2005) Incorporating new imaging models in breast cancer management. Curr Treat Options Oncol 6(2):135–145

    Article  PubMed  Google Scholar 

  47. CodeMap®: 2012 Medicare Physician Fee Schedule https://www.codemap.com/ge/index.cfm?cat=6&subcat=39. Accessed Sept 2012

  48. (2009) AIUM practice guideline for the performance of a breast ultrasound examination. J Ultrasound Med 28(1):105–109

  49. Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Bohm-Velez M, Pisano ED, Jong RA, Evans WP, Morton MJ et al (2008) Combined screening with ultrasound and mammography versus mammography alone in women at elevated risk of breast cancer. Jama 299(18):2151–2163

    Article  PubMed  CAS  Google Scholar 

  50. Kriege M, Brekelmans CT, Boetes C, Besnard PE, Zonderland HM, Obdeijn IM, Manoliu RA, Kok T, Peterse H, Tilanus-Linthorst MM et al (2004) Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 351(5):427–437

    Article  PubMed  CAS  Google Scholar 

  51. Lehman CD, Smith RA (2009) The role of MRI in breast cancer screening. J Natl Compr Canc Netw 7(10):1109–1115

    PubMed  Google Scholar 

  52. Network NCC: NCCN Clinical Practice Guidelines in Oncology: Breast Cancer, version 3.2012. In.; 2012

  53. Kolb TM, Lichy J, Newhouse JH (2002) Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27, 825 patient evaluations. Radiology 225(1):165–175

    Article  PubMed  Google Scholar 

  54. Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184(3):613–617

    PubMed  CAS  Google Scholar 

  55. Avril N, Schelling M, Dose J, Weber WA, Schwaiger M (1999) Utility of PET in breast cancer. Clin Positron Imaging 2(5):261–271

    Article  PubMed  Google Scholar 

  56. Buscombe JR, Holloway B, Roche N, Bombardieri E (2004) Position of nuclear medicine modalities in the diagnostic work-up of breast cancer. Q J Nucl Med Mol Imaging 48(2):109–118

    PubMed  CAS  Google Scholar 

  57. CodeMap®: 2012 Medicare Physician Fee Schedule

  58. Kalender WA, Beister M, Boone JM, Kolditz D, Vollmar SV, Weigel MC: High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations. Eur Radiol

  59. Zanzonico P, Dauer L, St Germain J (2008) Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities. Health Phys 95(5):554–570

    Article  PubMed  CAS  Google Scholar 

  60. Fahey FH, Palmer MR, Strauss KJ, Zimmerman RE, Badawi RD, Treves ST (2007) Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study. Radiology 243(1):96–104

    Article  PubMed  Google Scholar 

  61. Weigel M, Vollmar SV, Kalender WA (2011) Spectral optimization for dedicated breast CT. Med Phys 38(1):114–124

    Article  PubMed  Google Scholar 

  62. Crotty DJ, Brady SL, Jackson DC, Toncheva GI, Anderson CE, Yoshizumi TT, Tornai MP (2011) Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam. Med Phys 38(6):3232–3245

    Article  PubMed  Google Scholar 

  63. Nieweg OE, Kim EE, Wong WH, Broussard WF, Singletary SE, Hortobagyi GN, Tilbury RS (1993) Positron emission tomography with fluorine-18-deoxyglucose in the detection and staging of breast cancer. Cancer 71(12):3920–3925

    Article  PubMed  CAS  Google Scholar 

  64. Eubank WB, Mankoff DA, Vesselle HJ, Eary JF, Schubert EK, Dunnwald LK, Lindsley SK, Gralow JR, Austin-Seymour MM, Ellis GK et al (2002) Detection of locoregional and distant recurrences in breast cancer patients by using FDG PET. Radiographics 22(1):5–17

    PubMed  Google Scholar 

  65. Filippi V, Malamitsi J, Vlachou F, Laspas F, Georgiou E, Prassopoulos V, Andreou J (2011) The impact of FDG PET/CT on the management of breast cancer patients with elevated tumor markers and negative or equivocal conventional imaging modalities. Nucl Med Commun 32(2):85–90

    Article  PubMed  Google Scholar 

  66. Sloka JS, Hollett PD, Mathews M (2005) Cost-effectiveness of positron emission tomography in breast cancer. Mol Imaging Biol 7(5):351–360

    Article  PubMed  Google Scholar 

  67. Schirrmeister H, Kuhn T, Guhlmann A, Santjohanser C, Horster T, Nussle K, Koretz K, Glatting G, Rieber A, Kreienberg R et al (2001) Fluorine-18 2-deoxy-2-fluoro-d-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur J Nucl Med 28(3):351–358

    Article  PubMed  CAS  Google Scholar 

  68. Fuster D, Duch J, Paredes P, Velasco M, Munoz M, Santamaria G, Fontanillas M, Pons F (2008) Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol 26(29):4746–4751

    Article  PubMed  Google Scholar 

  69. Bergkvist L, Frisell J (2005) Multicentre validation study of sentinel node biopsy for staging in breast cancer. Br J Surg 92(10):1221–1224

    Article  PubMed  CAS  Google Scholar 

  70. Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S, Galimberti V, Intra M, Veronesi P, Robertson C, Maisonneuve P et al (2003) A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med 349(6):546–553

    Article  PubMed  Google Scholar 

  71. Veronesi U, De Cicco C, Galimberti VE, Fernandez JR, Rotmensz N, Viale G, Spano G, Luini A, Intra M, Veronesi P et al (2007) A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 18(3):473–478

    Article  PubMed  CAS  Google Scholar 

  72. Ueda S, Tsuda H, Asakawa H, Omata J, Fukatsu K, Kondo N, Kondo T, Hama Y, Tamura K, Ishida J et al (2008) Utility of 18F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in combination with ultrasonography for axillary staging in primary breast cancer. BMC Cancer 8:165

    Article  PubMed  Google Scholar 

  73. Kim J, Lee J, Chang E, Kim S, Suh K, Sul J, Song I, Kim Y, Lee C (2009) Selective sentinel node plus additional non-sentinel node biopsy based on an FDG-PET/CT scan in early breast cancer patients: single institutional experience. World J Surg 33(5):943–949

    Article  PubMed  Google Scholar 

  74. Utech CI, Young CS, Winter PF (1996) Prospective evaluation of fluorine-18 fluorodeoxyclucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 23(12):1588–1593

    Article  PubMed  CAS  Google Scholar 

  75. Crippa F, Agresti R, Seregni E, Greco M, Pascali C, Bogni A, Chiesa C, De Sanctis V, Delledonne V, Salvadori B et al (1998) Prospective evaluation of fluorine-18-FDG PET in presurgical staging of the axilla in breast cancer. J Nucl Med 39(1):4–8

    PubMed  CAS  Google Scholar 

  76. Cooper KL, Harnan S, Meng Y, Ward SE, Fitzgerald P, Papaioannou D, Wyld L, Ingram C, Wilkinson ID, Lorenz E (2011) Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol 37(3):187–198

    Article  PubMed  CAS  Google Scholar 

  77. Chung A, Liou D, Karlan S, Waxman A, Fujimoto K, Hagiike M, Phillips EH (2006) Preoperative FDG PET for axillary metastases in patients with breast cancer. Arch Surg 141(8):783–788; discussion 788–789

    Google Scholar 

  78. van der Hoeven JJ, Hoekstra OS, Comans EF, Pijpers R, Boom RP, van Geldere D, Meijer S, Lammertsma AA, Teule GJ (2002) Determinants of diagnostic performance of [F-18]fluorodeoxyglucose positron emission tomography for axillary staging in breast cancer. Ann Surg 236(5):619–624

    Article  PubMed  Google Scholar 

  79. Moon DH, Maddahi J, Silverman DH, Glaspy JA, Phelps ME, Hoh CK (1998) Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med 39(3):431–435

    PubMed  CAS  Google Scholar 

  80. Bender H, Kirst J, Palmedo H, Schomburg A, Wagner U, Ruhlmann J, Biersack HJ (1997) Value of 18fluoro-deoxyglucose positron emission tomography in the staging of recurrent breast carcinoma. Anticancer Res 17(3B):1687–1692

    Google Scholar 

  81. Kim H, Han W, Moon HG, Min J, Ahn SK, Kim TY, Im SA, Oh DY, Han SW, Chie EK et al (2011) The value of preoperative staging chest computed tomography to detect asymptomatic lung and liver metastasis in patients with primary breast carcinoma. Breast Cancer Res Treat 126(3):637–641

    Article  PubMed  CAS  Google Scholar 

  82. Basu S, Chen W, Tchou J, Mavi A, Cermik T, Czerniecki B, Schnall M, Alavi A (2008) Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer 112(5):995–1000

    Article  PubMed  CAS  Google Scholar 

  83. Tchou J, Sonnad SS, Bergey MR, Basu S, Tomaszewski J (2009) Alavi A. Degree of Tumor FDG Uptake Correlates with Proliferation Index in Triple Negative Breast Cancer. Mol Imaging Biol, Schnall M

    Google Scholar 

  84. Hodgson NC, Gulenchyn KY (2008) Is there a role for positron emission tomography in breast cancer staging? J Clin Oncol 26(5):712–720

    Article  PubMed  Google Scholar 

  85. Minn H, Soini I (1989) [18F]fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer. Eur J Nucl Med 15(2):61–66

    Article  PubMed  CAS  Google Scholar 

  86. Shie P, Cardarelli R, Brandon D, Erdman W, Abdulrahim N (2008) Meta-analysis: comparison of F-18Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin Nucl Med 33(2):97–101

    Article  PubMed  Google Scholar 

  87. Costelloe CM, Macapinlac HA, Madewell JE, Fitzgerald NE, Mawlawi OR, Rohren EM, Raymond AK, Lewis VO, Anderson PM, Bassett RL Jr et al (2009) 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med 50(3):340–347

    Article  PubMed  Google Scholar 

  88. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16(10):3375–3379

    PubMed  CAS  Google Scholar 

  89. Network NCC: NCCN Clinical Practice Guidelines in Oncology: Breast Cancer, version 3.2012. In.; 2012

  90. NCCN Clinical Practice Guidelines in Oncology: Breast Cancer, v.3.2012. In.: Available from: National Comprehensive Cancer Network, Fort Washington, PA.; 2012

  91. Riegger C, Herrmann J, Nagarajah J, Hecktor J, Kuemmel S, Otterbach F, Hahn S, Bockisch A, Lauenstein T, Antoch G et al (2012) Whole-body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients. Eur J Nucl Med Mol Imaging 39(5):852–863

    Article  PubMed  CAS  Google Scholar 

  92. Carlson RW, Allred DC, Anderson BO, Burstein HJ, Carter WB, Edge SB, Erban JK, Farrar WB, Goldstein LJ, Gradishar WJ et al (2009) Breast cancer. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 7(2):122–192

    PubMed  CAS  Google Scholar 

  93. Rosen EL, Turkington TG, Soo MS, Baker JA, Coleman RE (2005) Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: initial experience. Radiology 234(2):527–534

    Article  PubMed  Google Scholar 

  94. Berg WA, Weinberg IN, Narayanan D, Lobrano ME, Ross E, Amodei L, Tafra L, Adler LP, Uddo J, Stein W 3rd et al (2006) High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J 12(4):309–323

    Article  PubMed  Google Scholar 

  95. Murthy K, Aznar M, Thompson CJ, Loutfi A, Lisbona R, Gagnon JH (2000) Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med 41(11):1851–1858

    PubMed  CAS  Google Scholar 

  96. Levine EA, Freimanis RI, Perrier ND, Morton K, Lesko NM, Bergman S, Geisinger KR, Williams RC, Sharpe C, Zavarzin V et al (2003) Positron emission mammography: initial clinical results. Ann Surg Oncol 10(1):86–91

    Article  PubMed  Google Scholar 

  97. Moadel RM (2011) Breast cancer imaging devices. Semin Nucl Med 41(3):229–241

    Article  PubMed  Google Scholar 

  98. Eo JS, Chun IK, Paeng JC, Kang KW, Lee SM, Han W, Noh DY, Chung JK, Lee DS (2012) Imaging sensitivity of dedicated positron emission mammography in relation to tumor size. Breast 21(1):66–71

    Article  PubMed  Google Scholar 

  99. Weinberg IN (2006) Applications for positron emission mammography. Phys Med 21(Suppl 1):132–137

    Article  PubMed  Google Scholar 

  100. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, Narayanan D, Ozonoff A, Miller JP, Kalinyak JE (2011) Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology 258(1):59–72

    Article  PubMed  Google Scholar 

  101. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, Narayanan D, Kalinyak JE (2012) Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer. AJR Am J Roentgenol 198(1):219–232

    Article  PubMed  Google Scholar 

  102. Berg WA, Blume JD, Adams AM, Jong RA, Barr RG, Lehrer DE, Pisano ED, Evans WP, 3rd, Mahoney MC, Hovanessian Larsen L et al (2010) Reasons women at elevated risk of breast cancer refuse breast MR imaging screening: ACRIN 6666. Radiology 254(1):79–87

    Google Scholar 

  103. Kalinyak JE, Schilling K, Berg WA, Narayanan D, Mayberry JP, Rai R, Dupree EB, Shusterman DK, Gittleman MA, Luo W et al (2011) PET-guided breast biopsy. Breast J 17(2):143–151

    Article  PubMed  Google Scholar 

  104. Kiyotani K, Mushiroda T, Imamura CK, Hosono N, Tsunoda T, Kubo M, Tanigawara Y, Flockhart DA, Desta Z, Skaar TC et al (2010) Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J Clin Oncol 28(8):1287–1293

    Article  PubMed  CAS  Google Scholar 

  105. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, Hoctin-Boes G, Houghton J, Locker GY, Tobias JS (2005) Results of the ATAC (arimidex, tamoxifen, alone or in combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365(9453):60–62

    Article  PubMed  CAS  Google Scholar 

  106. Vollenweider-Zerargui L, Barrelet L, Wong Y, Lemarchand-Beraud T, Gomez F (1986) The predictive value of estrogen and progesterone receptors’ concentrations on the clinical behavior of breast cancer in women. Clinical correlation on 547 patients. Cancer 57(6):1171–1180

    Article  PubMed  CAS  Google Scholar 

  107. Mortimer JE, Dehdashti F, Siegel BA, Katzenellenbogen JA, Fracasso P, Welch MJ (1996) Positron emission tomography with 2-[18F]Fluoro-2-deoxy-d-glucose and 16alpha-[18F]fluoro-17beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res 2(6):933–939

    PubMed  CAS  Google Scholar 

  108. Dehdashti F, Flanagan FL, Mortimer JE, Katzenellenbogen JA, Welch MJ, Siegel BA (1999) Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 26(1):51–56

    Article  PubMed  CAS  Google Scholar 

  109. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19(11):2797–2803

    PubMed  CAS  Google Scholar 

  110. Dehdashti F, Mortimer JE, Trinkaus K, Naughton MJ, Ellis M, Katzenellenbogen JA, Welch MJ, Siegel BA (2009) PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat 113(3):509–517

    Article  PubMed  CAS  Google Scholar 

  111. Schroth W, Goetz MP, Hamann U, Fasching PA, Schmidt M, Winter S, Fritz P, Simon W, Suman VJ, Ames MM et al (2009) Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. Jama 302(13):1429–1436

    Article  PubMed  CAS  Google Scholar 

  112. Linden HM, Stekhova SA, Link JM, Gralow JR, Livingston RB, Ellis GK, Petra PH, Peterson LM, Schubert EK, Dunnwald LK et al (2006) Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24(18):2793–2799

    Article  PubMed  CAS  Google Scholar 

  113. Linden HM, Kurland BF, Peterson LM, Schubert EK, Gralow JR, Specht JM, Ellis GK, Lawton TJ, Livingston RB, Petra PH et al (2011) Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and fulvestrant in patients with metastatic breast cancer. Clin Cancer Res 17(14):4799–4805

    Article  PubMed  CAS  Google Scholar 

  114. Bardou VJ, Arpino G, Elledge RM, Osborne CK, Clark GM (2003) Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 21(10):1973–1979

    Article  PubMed  CAS  Google Scholar 

  115. Dawood S, Hu R, Homes MD, Collins LC, Schnitt SJ, Connolly J, Colditz GA, Tamimi RM (2011) Defining breast cancer prognosis based on molecular phenotypes: results from a large cohort study. Breast Cancer Res Treat 126(1):185–192

    Article  PubMed  Google Scholar 

  116. Dijkers EC, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J, de Jong JR, de Vries EG (2009) Lub-de Hooge MN: development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med 50(6):974–981

    Article  PubMed  CAS  Google Scholar 

  117. Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, van Dongen GA, Schroder CP, Lub-de Hooge MN, de Vries EG Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87(5):586–592

  118. Oude Munnink TH, Dijkers EC, Netters SJ, Lub-de Hooge MN, Brouwers AH, Haasjes JG, Schroder CP, de Vries EG (2010) Trastuzumab pharmacokinetics influenced by extent human epidermal growth factor receptor 2-positive tumor load. J Clin Oncol 28(21):e355–356; author reply e357

    Google Scholar 

  119. Yamamoto S, Ibusuki M, Yamamoto Y, Fu P, Fujiwara S, Murakami K, Iwase H (2012) Clinical relevance of Ki-67 gene expression analysis using formalin-fixed paraffin-embedded breast cancer specimens. Breast cancer (Tokyo, Japan)

  120. Ishihara M, Mukai H, Nagai S, Onozawa M, Nihei K, Shimada T, Wada N (2013) Retrospective analysis of risk factors for central nervous system metastases in operable breast cancer: effects of biologic subtype and ki67 overexpression on survival. Oncology 84(3):135–140

    Article  PubMed  CAS  Google Scholar 

  121. Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, Griffith C, Boeddinghaus I, Salter J, Detre S, Hills M et al (2005) Short-term changes in Ki-67 during neoadjuvant treatment of primary breast cancer with anastrozole or tamoxifen alone or combined correlate with recurrence-free survival. Clin Cancer Res 11(2 Pt 2):951s–958s

    PubMed  CAS  Google Scholar 

  122. Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, A’Hern R, Salter J, Detre S, Hills M, Walsh G (2007) Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J Natl Can Inst 99(2):167–170

    Article  CAS  Google Scholar 

  123. von Minckwitz G, Kummel S, Vogel P, Hanusch C, Eidtmann H, Hilfrich J, Gerber B, Huober J, Costa SD, Jackisch C et al (2008) Intensified neoadjuvant chemotherapy in early-responding breast cancer: phase III randomized GeparTrio study. J Natl Cancer Inst 100(8):552–562

    Article  CAS  Google Scholar 

  124. Hylton N (2006) MR imaging for assessment of breast cancer response to neoadjuvant chemotherapy. Magn Reson Imaging Clin N Am 14(3):383–389, vii

    Google Scholar 

  125. Hylton NM, Blume JD, Bernreuter WK, Pisano ED, Rosen MA, Morris EA, Weatherall PT, Lehman CD, Newstead GM, Polin S et al (2012) Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy–results from ACRIN 6657/I-SPY TRIAL. Radiology 263(3):663–672

    Article  PubMed  Google Scholar 

  126. Ueda S, Tsuda H, Saeki T, Omata J, Osaki A, Shigekawa T, Ishida J, Tamura K, Abe Y, Moriya T et al (2011) Early metabolic response to neoadjuvant letrozole, measured by FDG PET/CT, is correlated with a decrease in the Ki67 labeling index in patients with hormone receptor-positive primary breast cancer: a pilot study. Breast Cancer 18(4):299–308

    Article  PubMed  Google Scholar 

  127. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R (1993) Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 11(11):2101–2111

    PubMed  CAS  Google Scholar 

  128. Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, Bergh J (1995) Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 13(6):1470–1477

    PubMed  CAS  Google Scholar 

  129. Bassa P, Kim EE, Inoue T, Wong FC, Korkmaz M, Yang DJ, Wong WH, Hicks KW, Buzdar AU, Podoloff DA (1996) Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 37(6):931–938

    PubMed  CAS  Google Scholar 

  130. Duch J, Fuster D, Munoz M, Fernandez PL, Paredes P, Fontanillas M, Guzman F, Rubi S, Lomena FJ, Pons F (2009) 18F-FDG PET/CT for early prediction of response to neoadjuvant chemotherapy in breast cancer. Eur J Nucl Med Mol Imaging 36(10):1551–1557

    Article  PubMed  CAS  Google Scholar 

  131. Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Tseng J, Lawton TJ, Linden HM, Livingston RB (2003) Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 44(11):1806–1814

    PubMed  Google Scholar 

  132. Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, Werner M, Dose J, Janicke F, Graeff H et al (2000) Positron emission tomography using [(18)F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18(8):1689–1695

    PubMed  CAS  Google Scholar 

  133. Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, Waikar S, Whitaker T, Ah-See AK, Eremin O et al (2000) Positron emission tomography using [(18)F]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 18(8):1676–1688

    PubMed  CAS  Google Scholar 

  134. Cachin F, Prince HM, Hogg A, Ware RE, Hicks RJ (2006) Powerful prognostic stratification by [18F]fluorodeoxyglucose positron emission tomography in patients with metastatic breast cancer treated with high-dose chemotherapy. J Clin Oncol 24(19):3026–3031

    Article  PubMed  Google Scholar 

  135. Keam B, Im SA, Koh Y, Han SW, Oh DY, Cho N, Kim JH, Han W, Kang KW, Moon WK et al (2011) Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy. BMC Cancer 11:452

    Article  PubMed  CAS  Google Scholar 

  136. Ueda S, Tsuda H, Saeki T, Osaki A, Shigekawa T, Ishida J, Tamura K, Abe Y, Omata J, Moriya T et al (2010) Early reduction in standardized uptake value after one cycle of neoadjuvant chemotherapy measured by sequential FDG PET/CT is an independent predictor of pathological response of primary breast cancer. Breast J 16(6):660–662

    Article  PubMed  Google Scholar 

  137. Kolesnikov-Gauthier H, Vanlemmens L, Baranzelli MC, Vennin P, Servent V, Fournier C, Carpentier P, Bonneterre J (2012) Predictive value of neoadjuvant chemotherapy failure in breast cancer using FDG-PET after the first course. Breast Cancer Res Treat 131(2):517–525

    Article  PubMed  CAS  Google Scholar 

  138. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, Mattfeldt T, Neumaier B, Reske SN, Hetzel M (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44(9):1426–1431

    PubMed  CAS  Google Scholar 

  139. Mankoff DA, Shields AF, Krohn KA (2005) PET imaging of cellular proliferation. Radiol Clin North Am 43(1):153–167

    Article  PubMed  Google Scholar 

  140. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, Ricaud M, Bourbouloux E, Doutriaux I, Clouet M et al (2006) Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 24(34):5366–5372

    Article  PubMed  Google Scholar 

  141. Kumar A, Kumar R, Seenu V, Gupta SD, Chawla M, Malhotra A, Mehta SN (2009) The role of 18F-FDG PET/CT in evaluation of early response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Eur Radiol 19(6):1347–1357

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Hannah Linden, Lanell Peterson, and Brenda Kurland for providing the FES-PET images. We would also like to thank Naviscan for making the PEM images available to us and granting permission to use them.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Anna Cintolo.

Appendices

Appendix 1

See Table 1.

Appendix 2

See Fig. 1, 2, 3, 4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cintolo, J.A., Tchou, J. & Pryma, D.A. Diagnostic and prognostic application of positron emission tomography in breast imaging: emerging uses and the role of PET in monitoring treatment response. Breast Cancer Res Treat 138, 331–346 (2013). https://doi.org/10.1007/s10549-013-2451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2451-z

Keywords

Navigation