Skip to main content

Advertisement

Log in

XRCC2 Arg188His polymorphism is not directly associated with breast cancer risk: evidence from 37,369 subjects

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Several common single-nucleotide polymorphisms (SNPs) within the XRCC2 gene have been identified as potential breast cancer susceptibility loci and a coding SNP in exon 3 (Arg188His, rs3218536) has been extensively studied, though the results were inconclusive. We, in this study, performed a more convincing and precise estimation of the relationship between Arg188His and breast cancer by meta-analyzing the currently available evidence from literature. A total of 16 studies involving 18,341 cases and 19,028 controls (37,369 subjects) were identified for meta-analysis. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association in the codominant model, dominant model, and recessive model. When all the studies were pooled into meta-analysis, there was no evidence of a significant association between Arg188His and breast cancer risk in any genetic models. Notably, Arg188His tended to be related to breast cancer in a fixed-effects, dominant model (OR = 0.922, 95% CI: 0.870–0.978, P = 0.007); however, since there was a between-study heterogeneity (P h = 0.014), we assessed the association using a random-effects model instead and no significance was observed (OR = 0.932, 95% CI: 0.852–1.020, P = 0.128). Subgroup analysis by ethnicity did not change the results. In summary, the present meta-analysis suggests that the XRCC2 Arg188His is not directly associated with breast cancer risk. However, considering that susceptibility is likely to be the result of a complex interplay between genetic variation and environmental factors, we cannot rule out the possibility of interactions between Arg188His and other variants. Further investigation on the influence of this SNP in modifying the relationship between environment exposures and breast cancer risk is still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Easton DF, Eeles RA (2008) Genome-wide association studies in cancer. Hum Mol Genet 17:R109–R115

    Article  CAS  PubMed  Google Scholar 

  2. Gail MH (2008) Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. J Natl Cancer Inst 100:1037–1041

    Article  CAS  PubMed  Google Scholar 

  3. Johnatty SE, Spurdle AB, Beesley J, Chen X, Hopper JL, Duffy DL, Chenevix-Trench G (2008) Progesterone receptor polymorphisms and risk of breast cancer: results from two Australian breast cancer studies. Breast Cancer Res Treat 109:91–99

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez-Zuloeta Ladd AM, Vasquez AA, Rivadeneira F, Siemes C, Hofman A, Stricker BH, Pols HA, Uitterlinden AG, van Duijn CM (2008) Estrogen receptor alpha polymorphisms and postmenopausal breast cancer risk. Breast Cancer Res Treat 107:415–419

    Article  CAS  PubMed  Google Scholar 

  5. Maguire P, Margolin S, Skoglund J, Sun XF, Gustafsson JA, Borresen-Dale AL, Lindblom A (2005) Estrogen receptor beta (ESR2) polymorphisms in familial and sporadic breast cancer. Breast Cancer Res Treat 94:145–152

    Article  CAS  PubMed  Google Scholar 

  6. Justenhoven C, Hamann U, Schubert F, Zapatka M, Pierl CB, Rabstein S, Selinski S, Mueller T, Ickstadt K, Gilbert M, Ko YD, Baisch C, Pesch B, Harth V, Bolt HM, Vollmert C, Illig T, Eils R, Dippon J, Brauch H (2008) Breast cancer: a candidate gene approach across the estrogen metabolic pathway. Breast Cancer Res Treat 108:137–149

    Article  CAS  PubMed  Google Scholar 

  7. Yu KD, Di GH, Fan L, Wu J, Hu Z, Shen ZZ, Huang W, Shao ZM (2009) A functional polymorphism in the promoter region of GSTM1 implies a complex role for GSTM1 in breast cancer. FASEB J 23:2274–2287

    Article  CAS  PubMed  Google Scholar 

  8. Yu KD, Di GH, Yuan WT, Fan L, Wu J, Hu Z, Shen ZZ, Zheng Y, Huang W, Shao ZM (2009) Functional polymorphisms, altered gene expression and genetic association link NRH:quinone oxidoreductase 2 to breast cancer with wild-type p53. Hum Mol Genet 18:2502–2517

    Article  CAS  PubMed  Google Scholar 

  9. Frank B, Rigas SH, Bermejo JL, Wiestler M, Wagner K, Hemminki K, Reed MW, Sutter C, Wappenschmidt B, Balasubramanian SP, Meindl A, Kiechle M, Bugert P, Schmutzler RK, Bartram CR, Justenhoven C, Ko YD, Bruning T, Brauch H, Hamann U, Pharoah PP, Dunning AM, Pooley KA, Easton DF, Cox A, Burwinkel B (2008) The CASP8-652 6N del promoter polymorphism and breast cancer risk: a multicenter study. Breast Cancer Res Treat 111:139–144

    Article  CAS  PubMed  Google Scholar 

  10. Mohindra A, Hays LE, Phillips EN, Preston BD, Helleday T, Meuth M (2002) Defects in homologous recombination repair in mismatch-repair-deficient tumour cell lines. Hum Mol Genet 11:2189–2200

    Article  CAS  PubMed  Google Scholar 

  11. Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275

    Article  CAS  PubMed  Google Scholar 

  12. Johnson RD, Liu N, Jasin M (1999) Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401:397–399

    CAS  PubMed  Google Scholar 

  13. Griffin CS, Simpson PJ, Wilson CR, Thacker J (2000) Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol 2:757–761

    Article  CAS  PubMed  Google Scholar 

  14. Deans B, Griffin CS, O’Regan P, Jasin M, Thacker J (2003) Homologous recombination deficiency leads to profound genetic instability in cells derived from Xrcc2-knockout mice. Cancer Res 63:8181–8187

    CAS  PubMed  Google Scholar 

  15. Rodriguez-Lopez R, Osorio A, Sanchez-Pulido L, De La Hoya M, Barroso A, Caldes T, Benitez J (2003) No mutations in the XRCC2 gene in BRCA1/2-negative high-risk breast cancer families. Int J Cancer 103:136–137

    Article  CAS  PubMed  Google Scholar 

  16. Breast Cancer Association Consortium (2006) Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst 98:1382–1396

    Article  Google Scholar 

  17. Liu JB, Li M, Chen H, Zhong SQ, Yang S, Du WD, Hao JH, Zhang TS, Zhang XJ, Zeegers MP (2007) Association of vitiligo with HLA-A2: a meta-analysis. J Eur Acad Dermatol Venereol 21:205–213

    Article  PubMed  Google Scholar 

  18. Qiu LX, Chen B, Mao C, Zhan P, Yuan H, Xue K, Li J, Hu XC (2009) STK15 F31I polymorphism is associated with breast cancer risk: a meta-analysis involving 25, 014 subjects. Breast Cancer Res Treat 118:599–603

    Article  CAS  Google Scholar 

  19. Yu KD, Di GH, Fan L, Shao ZM (2009) Test of Hardy-Weinberg equilibrium in breast cancer case-control studies: an issue may influence the conclusions. Breast Cancer Res Treat 117:675–677

    Article  PubMed  Google Scholar 

  20. Wittke-Thompson JK, Pluzhnikov A, Cox NJ (2005) Rational inferences about departures from Hardy-Weinberg equilibrium. Am J Hum Genet 76:967–986

    Article  CAS  PubMed  Google Scholar 

  21. Lee KM, Choi JY, Kang C, Kang CP, Park SK, Cho H, Cho DY, Yoo KY, Noh DY, Ahn SH, Park CG, Wei Q, Kang D (2005) Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk. Clin Cancer Res 11:4620–4626

    Article  CAS  PubMed  Google Scholar 

  22. Shin A, Lee KM, Ahn B, Park CG, Noh SK, Park DY, Ahn SH, Yoo KY, Kang D (2008) Genotype-phenotype relationship between DNA repair gene genetic polymorphisms and DNA repair capacity. Asian Pac J Cancer Prev 9:501–505

    PubMed  Google Scholar 

  23. Webb PM, Hopper JL, Newman B, Chen X, Kelemen L, Giles GG, Southey MC, Chenevix-Trench G, Spurdle AB (2005) Double-strand break repair gene polymorphisms and risk of breast or ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:319–323

    Article  CAS  PubMed  Google Scholar 

  24. Brooks J, Shore RE, Zeleniuch-Jacquotte A, Currie D, Afanasyeva Y, Koenig KL, Arslan AA, Toniolo P, Wirgin I (2008) Polymorphisms in RAD51, XRCC2, and XRCC3 are not related to breast cancer risk. Cancer Epidemiol Biomarkers Prev 17:1016–1019

    Article  CAS  PubMed  Google Scholar 

  25. Jakubowska A, Gronwald J, Menkiszak J, Gorski B, Huzarski T, Byrski T, Toloczko-Grabarek A, Gilbert M, Edler L, Zapatka M, Eils R, Lubinski J, Scott RJ, Hamann U (2010) BRCA1-associated breast and ovarian cancer risks in Poland: no association with commonly studied polymorphisms. Breast Cancer Res Treat 119:201–211

    Article  PubMed  Google Scholar 

  26. Loizidou MA, Michael T, Neuhausen SL, Newbold RF, Marcou Y, Kakouri E, Daniel M, Papadopoulos P, Malas S, Kyriacou K, Hadjisavvas A (2008) Genetic polymorphisms in the DNA repair genes XRCC1, XRCC2 and XRCC3 and risk of breast cancer in Cyprus. Breast Cancer Res Treat 112:575–579

    Article  CAS  PubMed  Google Scholar 

  27. Millikan RC, Player JS, Decotret AR, Tse CK, Keku T (2005) Polymorphisms in DNA repair genes, medical exposure to ionizing radiation, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:2326–2334

    Article  CAS  PubMed  Google Scholar 

  28. Han J, Hankinson SE, Ranu H, De Vivo I, Hunter DJ (2004) Polymorphisms in DNA double-strand break repair genes and breast cancer risk in the Nurses’ Health Study. Carcinogenesis 25:189–195

    Article  CAS  PubMed  Google Scholar 

  29. Garcia-Closas M, Egan KM, Newcomb PA, Brinton LA, Titus-Ernstoff L, Chanock S, Welch R, Lissowska J, Peplonska B, Szeszenia-Dabrowska N, Zatonski W, Bardin-Mikolajczak A, Struewing JP (2006) Polymorphisms in DNA double-strand break repair genes and risk of breast cancer: two population-based studies in USA and Poland, and meta-analyses. Hum Genet 119:376–388

    Article  CAS  PubMed  Google Scholar 

  30. Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, Lipscombe JM, Day NE, Easton DF, Ponder BA, Pharoah PD, Dunning A (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11:1399–1407

    Article  CAS  PubMed  Google Scholar 

  31. Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA (2007) Association between common variation in 120 candidate genes and breast cancer risk. PLoS Genet 3:e42

    Article  PubMed  CAS  Google Scholar 

  32. Pooley KA, Baynes C, Driver KE, Tyrer J, Azzato EM, Pharoah PD, Easton DF, Ponder BA, Dunning AM (2008) Common single-nucleotide polymorphisms in DNA double-strand break repair genes and breast cancer risk. Cancer Epidemiol Biomarkers Prev 17:3482–3489

    Article  CAS  PubMed  Google Scholar 

  33. Rafii S, O’Regan P, Xinarianos G, Azmy I, Stephenson T, Reed M, Meuth M, Thacker J, Cox A (2002) A potential role for the XRCC2 R188H polymorphic site in DNA-damage repair and breast cancer. Hum Mol Genet 11:1433–1438

    Article  CAS  PubMed  Google Scholar 

  34. Silva SN, Tomar M, Paulo C, Gomes BC, Azevedo AP, Teixeira V, Pina JE, Rueff J, Gaspar JF (2009) Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol. doi:10.1016/j.canep.2009.11.002

    PubMed  Google Scholar 

  35. Sehl ME, Langer LR, Papp JC, Kwan L, Seldon JL, Arellano G, Reiss J, Reed EF, Dandekar S, Korin Y, Sinsheimer JS, Zhang ZF, Ganz PA (2009) Associations between single nucleotide polymorphisms in double-stranded DNA repair pathway genes and familial breast cancer. Clin Cancer Res 15:2192–2203

    Article  CAS  PubMed  Google Scholar 

  36. Haiman CA, Hsu C, de Bakker PI, Frasco M, Sheng X, Van Den Berg D, Casagrande JT, Kolonel LN, Le Marchand L, Hankinson SE, Han J, Dunning AM, Pooley KA, Freedman ML, Hunter DJ, Wu AH, Stram DO, Henderson BE (2008) Comprehensive association testing of common genetic variation in DNA repair pathway genes in relationship with breast cancer risk in multiple populations. Hum Mol Genet 17:825–834

    Article  CAS  PubMed  Google Scholar 

  37. Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K, Vierkant RA, Maloney SD, Pankratz VS, Hillman DW, Suman VJ, Johnson J, Blake C, Tlsty T, Vachon CM, Melton LJ 3rd, Visscher DW (2005) Benign breast disease and the risk of breast cancer. N Engl J Med 353:229–237

    Article  CAS  PubMed  Google Scholar 

  38. Pharoah PD, Antoniou AC, Easton DF, Ponder BA (2008) Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358:2796–2803

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by grants from the National Basic Research Program of China (2006CB910501), 2009 Youth Foundation of Shanghai Public Health Bureau, and the National Natural Science Foundation of China (30971143, 30972936).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ming Shao.

Additional information

Ke-Da Yu and Ao-Xiang Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, KD., Chen, AX., Qiu, LX. et al. XRCC2 Arg188His polymorphism is not directly associated with breast cancer risk: evidence from 37,369 subjects. Breast Cancer Res Treat 123, 219–225 (2010). https://doi.org/10.1007/s10549-010-0753-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0753-y

Keywords

Navigation