Skip to main content

Advertisement

Log in

Daily coordination of cancer growth and circadian clock gene expression

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background.Circadian coordination in mammals is accomplished, in part, by coordinate, rhythmic expression of a series of circadian clock genes in the central clock within the suprachiasmatic nuclei (SCN) of the hypothalamus. These same genes are also rhythmically expressed each day within each peripheral tissue.

Methods.We measured tumor size, tumor cell cyclin E protein, tumor cell mitotic index, and circadian clock gene expression in liver and tumor cells at six equispaced times of day in individual mice of a 12-h light, 12-h dark schedule.

Results.We demonstrate that C3HFeJ/HeB mice with transplanted syngeneic mammary tumor maintain largely normal circadian sleep/activity patterns, and that the rate of tumor growth is highly rhythmic during each day. Two daily 2.5-fold peaks in cancer cell cyclin E protein, a marker of DNA synthesis, are followed by two daily up-to-3-fold peaks in cancer cell mitosis (one minor, and one major peak). These peaks are, in turn, followed by two prominent daily peaks in tumor growth rate occurring during mid-sleep and the second, during mid-activity. These data indicate that all therapeutic targets relevant to tumor growth and tumor cell proliferation are ordered in tumor cells within each day. The daily expression patterns of the circadian clock genes Bmal1, mPer1, and mPer2, remain normally circadian coordinated in the livers of these tumor bearing mice. Bmal1 gene expression remains circadian rhythmic in cancer cells, although damped in amplitude, with a similar circadian pattern to that in normal hepatocytes. However, tumor cell mPer1 and mPer2 gene expression patterns fail to maintain statistically significant daily rhythms.

Conclusion. We conclude that, if core circadian clock gene expression is essential to gate tumor cell proliferation within each day, then there may be substantial redundancy in this timing system. Alternatively, the daily ordering of tumor cell clock gene expression may not be essential to the daily gating of cancer cell DNA synthesis, mitosis and growth. This would indicate that host central SCN-mediated neuro–humoro-behavioral controls and/or daily light-induced changes in melatonin or peripherally-induced rhythms such as those resulting from feeding, may be adequate for the daily coordination of cancer cell expression of proliferation related therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CS. Pittendrigh (1993) ArticleTitleTemporat organization: reflections of a Darwinian clock-watcher Ann Rev Physiol 55 16–54 Occurrence Handle1:STN:280:DyaK3s3itFWjsg%3D%3D Occurrence Handle10.1146/annurev.ph.55.030193.000313

    Article  CAS  Google Scholar 

  2. MH Vitaterna DP King AM Chang JM Kornhauser PL Lowrey JD McDonald WF Dove LH Pinto FW Turek JS. Takahashi (1994) ArticleTitleMutagenesis and mapping of a mouse gene, clock, essential for circadian behavior Science 264 719–725 Occurrence Handle1:CAS:528:DyaK2cXktVagsLs%3D Occurrence Handle8171325

    CAS  PubMed  Google Scholar 

  3. DP King Y Zhao AM Sangoram LD Wilsbacher M Tanaka MP Antoch TD Steeves MH Vitaterna JM Kornhauser PL Lowrey et al. (1997) ArticleTitlePositional cloning of the mouse circadian clock gene Cell 89 IssueID4 641–653 Occurrence Handle10.1016/S0092-8674(00)80245-7 Occurrence Handle1:CAS:528:DyaK2sXjsVSnu74%3D Occurrence Handle9160755

    Article  CAS  PubMed  Google Scholar 

  4. H Tei H Okamura Y Shigeyoshi C Fukuhara R Ozawa M Hirose Y. Sakaki (1997) ArticleTitleCircadian oscillation of a mammalian homologue of the Drosophila period gene Nature 389 IssueID6650 512–516 Occurrence Handle10.1038/39086 Occurrence Handle1:CAS:528:DyaK2sXmsFaisLc%3D Occurrence Handle9333243

    Article  CAS  PubMed  Google Scholar 

  5. ZS Sun U Albrecht O Zhuchenko J Bailey G Eichele CC. Lee (1997) ArticleTitleRIGUI, a putative mammalian ortholog of the Drosophila period gene Cell 90 IssueID6 1003–1011 Occurrence Handle10.1016/S0092-8674(00)80366-9 Occurrence Handle1:CAS:528:DyaK2sXmtlOgtb8%3D Occurrence Handle9323128

    Article  CAS  PubMed  Google Scholar 

  6. N Gekakis D Staknis HB Nguyen FC Davis LD Wilsbacher DP King JS Takahashi CJ. Weitz (1998) ArticleTitleRole of the CLOCK protein in the mammalian circadian mechanism Science 280 IssueID5369 1564–1569 Occurrence Handle10.1126/science.280.5369.1564 Occurrence Handle1:CAS:528:DyaK1cXjsFOqtbw%3D Occurrence Handle9616112

    Article  CAS  PubMed  Google Scholar 

  7. AM Sangoram L Saez MP Antoch N Gekakis D Staknis A Whiteley EM Fruechte MH Vitaterna K Shimomura DP King et al. (1998) ArticleTitleMammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription Neuron 21 IssueID5 1101–1113 Occurrence Handle10.1016/S0896-6273(00)80627-3 Occurrence Handle1:CAS:528:DyaK1cXotVSrtbw%3D Occurrence Handle9856465

    Article  CAS  PubMed  Google Scholar 

  8. AJ Davidson AS Poole S Yamazaki M. Menaker (2003) ArticleTitleIs the food-entrainable circadian oscillator in the digestive system? Genes Brain Behav 2 IssueID1 32–39 Occurrence Handle10.1034/j.1601-183X.2003.00005.x Occurrence Handle1:STN:280:DC%2BD3szkvFOgsA%3D%3D Occurrence Handle12882317

    Article  CAS  PubMed  Google Scholar 

  9. KA Stokkan S Yamazaki H Tei Y Sakaki M Menaker (2001) ArticleTitleEntrainment of the circadian clock in the liver by feeding Science 291 IssueID5503 490–493 Occurrence Handle10.1126/science.291.5503.490 Occurrence Handle1:CAS:528:DC%2BD3MXlslensQ%3D%3D Occurrence Handle11161204

    Article  CAS  PubMed  Google Scholar 

  10. MJ Zylka LP Shearman DR Weaver SM. Reppert (1998) ArticleTitleThree period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain Neuron 20 IssueID6 1103–1110 Occurrence Handle10.1016/S0896-6273(00)80492-4 Occurrence Handle1:CAS:528:DyaK1cXktFOlu7k%3D Occurrence Handle9655499

    Article  CAS  PubMed  Google Scholar 

  11. K Sakamoto T Nagase H Fukui K Horikawa T Okada H Tanaka K Sato Y Miyake O Ohara K Kako et al. (1998) ArticleTitleMultitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain J Biol Chem 273 27039–27042 Occurrence Handle10.1074/jbc.273.42.27039 Occurrence Handle1:CAS:528:DyaK1cXntVShsbo%3D Occurrence Handle9765215

    Article  CAS  PubMed  Google Scholar 

  12. LE. Scheving (1959) ArticleTitleMitotic activity in the human epidermis Anat Rec 135 7–19 Occurrence Handle10.1002/ar.1091350103 Occurrence Handle1:STN:280:DyaF3c7psFCmsg%3D%3D Occurrence Handle14442704

    Article  CAS  PubMed  Google Scholar 

  13. R Smaaland O Laerum K Lote O Sletvold R Sothern R. Bjerknes (1991) ArticleTitleDNA synthesis in human bone marrow is circadian stage dependent Blood 77 2603–2611 Occurrence Handle1:CAS:528:DyaK3MXkvV2rtrs%3D Occurrence Handle2043764

    CAS  PubMed  Google Scholar 

  14. K Buchi J Moore W Hrushesky R Sothern N. Rubin (1991) ArticleTitleCircadian rhythm of cellular proliferation in the human rectal mucosa Gastroenterology 101 410–415 Occurrence Handle1:STN:280:DyaK3M3ptlGjsQ%3D%3D Occurrence Handle2065918

    CAS  PubMed  Google Scholar 

  15. LE Scheving ER Burns JE Pauly F Halberg E. Haus (1977) ArticleTitleSurvival and cure of leukemic mice after circadian optimization of treatment with cyclophosphamide and 1-beta-D-arabinofuranosylcytosine Cancer Res 37 IssueID10 3648–3655 Occurrence Handle1:CAS:528:DyaE1cXhsFyquw%3D%3D Occurrence Handle908013

    CAS  PubMed  Google Scholar 

  16. E Haus F Halberg L Scheving S Cardoso JFW Kuhl R Sothern R Shiotsuka D Hwang SE. Pauli (1972) ArticleTitleIncreased tolerance of mice to arabinosylcytosine given on schedule adjusted to circadian system Science 177 80–82 Occurrence Handle1:CAS:528:DyaE38Xlt1ajur8%3D Occurrence Handle5041782

    CAS  PubMed  Google Scholar 

  17. WJ Hrushesky GA. Bjarnason (1993) ArticleTitleCircadian cancer therapy J Clin Oncol 11 IssueID7 1403–1417 Occurrence Handle1:STN:280:DyaK3szgtFKkug%3D%3D Occurrence Handle8315438

    CAS  PubMed  Google Scholar 

  18. WJ. Hrushesky (1985) ArticleTitleCircadian timing of cancer chemotherapy Science 228 IssueID4695 73–75 Occurrence Handle1:STN:280:DyaL2M7kt1Wkug%3D%3D Occurrence Handle3883493

    CAS  PubMed  Google Scholar 

  19. F Lévi R Zidani J-L. Misset (1997) ArticleTitleRandomised multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer Lancet 360 681–686 Occurrence Handle10.1016/S0140-6736(97)03358-8

    Article  Google Scholar 

  20. FA Levi R Zidani JM Vannetzel B Perpoint C Focan R Faggiuolo P Chollet C Garufi M Itzhaki L Dogliotti et al. (1994) ArticleTitleChronomodulated versus fixed-infusion-rate delivery of ambulatory chemotherapy with oxaliplatin, fluorouracil, and folinic acid (leucovorin) in patients with colorectal cancer metastases: a randomized multi-institutional trial J Natl Cancer Inst 86 IssueID21 1608–1617 Occurrence Handle1:STN:280:DyaK2M%2FhvVensg%3D%3D Occurrence Handle7932825

    CAS  PubMed  Google Scholar 

  21. PA Wood WJ. Hrushesky (1996) ArticleTitleCircadian rhythms and cancer chemotherapy Crit Rev Eukaryot Gene Expr 6 IssueID4 299–343 Occurrence Handle1:CAS:528:DyaK2sXitlGrsA%3D%3D Occurrence Handle8959371

    CAS  PubMed  Google Scholar 

  22. PA Wood WJ Hrushesky R. Klevecz (1998) ArticleTitleDistinct circadian time structures characterize myeloid and erythroid progenitor and multipotential cell clonogenicity as well as marrow precursor proliferation dynamics Exp Hematol 26 IssueID6 523–533 Occurrence Handle1:STN:280:DyaK1c3otFGqtA%3D%3D Occurrence Handle9620286

    CAS  PubMed  Google Scholar 

  23. D Lincoln W Hrushesky P. Wood (2000) ArticleTitleCircadian organization of thymidylate synthase activity in normal tissues: a possible basis for 5-fluorouracil chronotherapeutic advantage Int J Cancer 88 479–485 Occurrence Handle10.1002/1097-0215(20001101)88:3<479::AID-IJC23>3.3.CO;2-Q Occurrence Handle1:CAS:528:DC%2BD3cXnsFWnur8%3D Occurrence Handle11054680

    Article  CAS  PubMed  Google Scholar 

  24. G Bjarnason R Jordan P Wood Q Li D Lincoln R Sothern W Hrushesky Y. Ben-David (2001) ArticleTitleCircadian expression of clock genes in human oral mucosa and skin: association with specific cell cycle phases Amer J Pathol 158 1793–1801 Occurrence Handle1:CAS:528:DC%2BD3MXktVOitLk%3D

    CAS  Google Scholar 

  25. RB Sothern F Levi E Haus F Halberg WJM. Hrushesky (1989) ArticleTitleControl of a murine plasmacytoma with doxorubicin-cisplatin: dependence on circadian stage of treatment J Natl Cancer Inst 81 IssueID2 135–145 Occurrence Handle1:CAS:528:DyaL1MXovVWmtQ%3D%3D Occurrence Handle2909754

    CAS  PubMed  Google Scholar 

  26. WJ Hrushesky D Lannin E. Haus (1998) ArticleTitleEvidence for an ontogenetic basis for circadian coordination of cancer cell proliferation J Natl Cancer Inst 90 IssueID19 1480–1484 Occurrence Handle10.1093/jnci/90.19.1480 Occurrence Handle1:STN:280:DyaK1cvkslejuw%3D%3D Occurrence Handle9776414

    Article  CAS  PubMed  Google Scholar 

  27. R Smaaland K Lote RB Sothern OD. Laerum (1993) ArticleTitleDNA synthesis and ploidy in non-Hodgkin’s lymphomas demonstrate intrapatient variation depending on circadian stage of cell sampling Cancer Res 53 3129–3138 Occurrence Handle1:STN:280:DyaK3szgs1KmsQ%3D%3D Occurrence Handle8319221

    CAS  PubMed  Google Scholar 

  28. RR Klevecz RM Shymko D Blumenfeld PS. Braly (1987) ArticleTitleCircadian gating of S phase in human ovarian cancer Cancer Res 47 6267–6271 Occurrence Handle1:STN:280:DyaL1c%2Flt1Gqsw%3D%3D Occurrence Handle3677075

    CAS  PubMed  Google Scholar 

  29. B Fisher E. Fisher (1959) ArticleTitleExperimental evidence in support of the dormant tumor cell science Science 130 918–919 Occurrence Handle1:STN:280:DyaF3c7ktlKmuw%3D%3D Occurrence Handle13823184

    CAS  PubMed  Google Scholar 

  30. WJM Hrushesky AZ Bluming SA Gruber RB. Sothern (1989) ArticleTitleMenstrual influence on surgical cure of breast cancer Lancet ii: 949 IssueID-952 949–952 Occurrence Handle10.1016/S0140-6736(89)90956-2

    Article  Google Scholar 

  31. You S, Li W, Kobayashi M, Xiong Y, Hrushesky WJ, Wood PA. (2004). Creation of a stable mammary tumor cell line that maintains fertility cycle tumor biology of the parent tumor. In Vitro Cell De Biol Anim 40(3)

  32. W Wells RO Rainer VA. Memoli (1992) ArticleTitleBasic principles of image processing Am J Clin Pathol 98 493–501 Occurrence Handle1:STN:280:DyaK3s7jsFWnsw%3D%3D Occurrence Handle1485602

    CAS  PubMed  Google Scholar 

  33. S You K Yao Y. Cao (1996) ArticleTitleLatency of Epstein-Barr virus and its relationship to nasopharyngeal carcinomas Zhonghua Zhong Liu Za Zhi 18 23–26 Occurrence Handle1:CAS:528:DyaK28XkvVWnsLk%3D Occurrence Handle8732106

    CAS  PubMed  Google Scholar 

  34. K Hori QH Zhang HC Li S. Saito (1995) ArticleTitleVariation of growth rate of a rat tumour during a light–dark cycle: correlation with circadian fluctuations in tumour blood flow Br J Cancer 71 IssueID6 1163–1168 Occurrence Handle1:STN:280:DyaK2M3pvVKmuw%3D%3D Occurrence Handle7779706

    CAS  PubMed  Google Scholar 

  35. P Bevilacqua M Barbareschi P Verderio P Boracchi O Caffo P Dalla Palma S Meli N Weidner G. Gasparini (1995) ArticleTitlePrognostic value of intratumoral microvessel density, a measure of tumor angiogenesis, in node-negative breast carcinoma–results of a multiparametric study Breast Cancer Res Treat 36 205–217 Occurrence Handle10.1007/BF00666041 Occurrence Handle1:STN:280:DyaK28%2FkvFyjtg%3D%3D Occurrence Handle8534868

    Article  CAS  PubMed  Google Scholar 

  36. J Laforga FI. Aranda (2000) ArticleTitleAngiogenic Index: a new method for assessing microvascularity in breast carcinoma with possible prognostic implications Breast J 6 103–107 Occurrence Handle10.1046/j.1524-4741.2000.99011.x Occurrence Handle11348344

    Article  PubMed  Google Scholar 

  37. A Koff A Giordano D Desai K Yamashita JW Harper S Elledge T Nishimoto DO Morgan BR Franza JM. Roberts (1992) ArticleTitleFormation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle Science 257 IssueID5077 1689–1694 Occurrence Handle1:CAS:528:DyaK3sXlslSisQ%3D%3D Occurrence Handle1388288

    CAS  PubMed  Google Scholar 

  38. A Koff F Cross A Fisher J Schumacher K Leguellec M Philippe JM. Roberts (1991) ArticleTitleHuman cyclin E, a new cyclin that interacts with two members of the CDC2 gene family Cell 66 IssueID6 1217–1228 Occurrence Handle10.1016/0092-8674(91)90044-Y Occurrence Handle1:CAS:528:DyaK38Xls1Gjsbo%3D Occurrence Handle1833068

    Article  CAS  PubMed  Google Scholar 

  39. M Ohtsubo AM Theodoras J Schumacher JM Roberts M. Pagano (1995) ArticleTitleHuman cyclin E, a nuclear protein essential for the G1-to-S phase transition Mol Cell Biol 15 IssueID5 2612–2624 Occurrence Handle1:STN:280:DyaK2M3lsl2nsA%3D%3D Occurrence Handle7739542

    CAS  PubMed  Google Scholar 

  40. A Abizaid G Mezei TL. Horvath (2004) ArticleTitleEstradiol enhances light-induced expression of transcription factors in the SCN Brain Res 1010 IssueID1–2 35–44 Occurrence Handle10.1016/j.brainres.2004.01.089 Occurrence Handle1:CAS:528:DC%2BD2cXjs1Wltb0%3D Occurrence Handle15126115

    Article  CAS  PubMed  Google Scholar 

  41. R Hara K Wan H Wakamatsu R Aida T Moriya M Akiyama S. Shibata (2001) ArticleTitleRestricted feeding entrains liver clock without participation of the suprachiasmatic nucleus Genes Cells 6 IssueID3 269–278 Occurrence Handle10.1046/j.1365-2443.2001.00419.x Occurrence Handle1:CAS:528:DC%2BD3MXivVaqs7w%3D Occurrence Handle11260270

    Article  CAS  PubMed  Google Scholar 

  42. X Jin LP Shearman DR Weaver MJ Zylka GJ Vries Particlede SM. Reppert (1999) ArticleTitleA molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock Cell 96 IssueID1 57–68 Occurrence Handle10.1016/S0092-8674(00)80959-9 Occurrence Handle1:CAS:528:DyaK1MXmslagtg%3D%3D Occurrence Handle9989497

    Article  CAS  PubMed  Google Scholar 

  43. C Lee JP Etchegaray FR Cagampang AS Loudon SM. Reppert (2001) ArticleTitlePosttranslational mechanisms regulate the mammalian circadian clock Cell 107 IssueID7 855–867 Occurrence Handle10.1016/S0092-8674(01)00610-9 Occurrence Handle1:CAS:528:DC%2BD38XjtlKmug%3D%3D Occurrence Handle11779462

    Article  CAS  PubMed  Google Scholar 

  44. K Oishi H Fukui N. Ishida (2000) ArticleTitleRhythmic expression of BMAL1 mRNA is altered in clock mutant mice: differential regulation in the suprachiasmatic nucleus and peripheral tissues Biochem Biophys Res Commun 268 IssueID1 164–171 Occurrence Handle10.1006/bbrc.1999.2054 Occurrence Handle1:CAS:528:DC%2BD3cXnsVWnsg%3D%3D Occurrence Handle10652231

    Article  CAS  PubMed  Google Scholar 

  45. M Takata N Burioka S Ohdo H Takane H Terazono M Miyata T Sako H Suyama Y Fukuoka K Tomita et al. (2002) ArticleTitleDaily expression of mRNAs for the mammalian clock genes Per2 and clock in mouse suprachiasmatic nuclei and liver and human peripheral blood mononuclear cells Jpn J Pharmacol 90 IssueID3 263–269 Occurrence Handle10.1254/jjp.90.263 Occurrence Handle1:CAS:528:DC%2BD38XptVyku7o%3D Occurrence Handle12499581

    Article  CAS  PubMed  Google Scholar 

  46. M Mormont J Prins ParticleDe F. Levi (1996) ArticleTitleStudy of circadian rhythm of activity by actometry: preliminary results in 30 patients with metastatic colorectal cancer Path Biol 3 165–171

    Google Scholar 

  47. SE Sephton RM Sapolsky HC Kraemer D. Spiegel (2000) ArticleTitleDiurnal cortisol rhythm as a predictor of breast cancer survival J Natl Cancer Inst 92 IssueID12 994–1000 Occurrence Handle10.1093/jnci/92.12.994 Occurrence Handle1:STN:280:DC%2BD3czitV2ntg%3D%3D Occurrence Handle10861311

    Article  CAS  PubMed  Google Scholar 

  48. K Hori Q-H Zhang H-C Li S. Saito (1995) ArticleTitleVariation of growth rate of a rat tumour during a light–dark cycle: correlation with circadian fluctuations in tumour blood flow Br J of Cancer 71 1163–1168 Occurrence Handle1:STN:280:DyaK2M3pvVKmuw%3D%3D

    CAS  Google Scholar 

  49. K Hori M Suzuki S Tanda S Saito M Shinozaki QH. Zhang (1992) ArticleTitleCircadian variation of tumor blood flow in rat subcutaneous tumors and its alteration by angiotensin II-induced hypertension Cancer Res 52 IssueID4 912–916 Occurrence Handle1:STN:280:DyaK387ksFKgtA%3D%3D Occurrence Handle1737354

    CAS  PubMed  Google Scholar 

  50. A. Voutilainen (1953) ArticleTitleÜber die 24-stunden-rhythmik der mitozfrequenz in malignen tumoren Acta Path Microb Scan 99 IssueIDSuppl 1–104 Occurrence Handle1:STN:280:DyaG2c%2FlvVWjtA%3D%3D

    CAS  Google Scholar 

  51. E. Tähti (1956) ArticleTitleStudies of the effect of X-irradiation on 24 hour variations in the mitotic activity in human malignant tumours Acta Path Microbiol Scand 117 1–61

    Google Scholar 

  52. RE Nash JM. Llanos (1971) ArticleTitleTwenty-four-hour variations in DNA synthesis of a fast-growing and a slow-growing hepatoma: DNA synthesis rhythm in hepatoma J Natl Cancer Inst 47 IssueID5 1007–1012 Occurrence Handle1:CAS:528:DyaE38XksVCktA%3D%3D Occurrence Handle4330794

    CAS  PubMed  Google Scholar 

  53. E Burns L Scheving T. Tsai (1979) ArticleTitleCircadian rhythms in DNA synthesis and mitosis in normal mice and in mice bearing the Lewis lung carcinoma Eur J Cancer 15 233–242 Occurrence Handle1:CAS:528:DyaE1MXhsV2qtr0%3D Occurrence Handle436900

    CAS  PubMed  Google Scholar 

  54. CH McGowan P. Russell (1995) ArticleTitleCell cycle regulation of human WEE1 Embro J 14 IssueID10 2166–2175 Occurrence Handle1:CAS:528:DyaK2MXlvFynsLs%3D

    CAS  Google Scholar 

  55. P Jin Y Gu DO. Morgan (1996) ArticleTitleRole of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells J Cell Biol 134 IssueID4 963–970 Occurrence Handle10.1083/jcb.134.4.963 Occurrence Handle1:CAS:528:DyaK28XltFGrtLg%3D Occurrence Handle8769420

    Article  CAS  PubMed  Google Scholar 

  56. N Watanabe M Broome T. Hunter (1995) ArticleTitleRegulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle Embro J 14 IssueID9 1879–1891

    Google Scholar 

  57. CJ Sherr JM. Roberts (1995) ArticleTitleInhibitors of mammalian G1 cyclin-dependent kinases Genes Dev 9 IssueID10 1149–1163 Occurrence Handle1:CAS:528:DyaK2MXlvFShs7Y%3D Occurrence Handle7758941

    CAS  PubMed  Google Scholar 

  58. WW Tchou WN Rom KM. Tchou-Wong (1996) ArticleTitleNovel form of p21(WAF1/CIP1/SDI1) protein in phorbolester-induced G2/M arrest J Biol Chem 271 IssueID47 29556–29560 Occurrence Handle10.1074/jbc.271.47.29556 Occurrence Handle1:CAS:528:DyaK28XntFKmsL4%3D Occurrence Handle8939883

    Article  CAS  PubMed  Google Scholar 

  59. C Badie J Bourhis J Sobczak-Thepot H Haddada M Chiron M Janicot F Janot T Tursz G. Vassal (2000) ArticleTitlep53-dependent G2 arrest associated with a decrease in cyclins A2 and B1 levels in a human carcinoma cell line Br J Cancer 82 IssueID3 642–650 Occurrence Handle10.1054/bjoc.1999.0976 Occurrence Handle1:CAS:528:DC%2BD3cXht1eisb0%3D Occurrence Handle10682678

    Article  CAS  PubMed  Google Scholar 

  60. T Matsuo S Yamaguchi S Mitsui A Emi F Shimoda H. Okamura (2003) ArticleTitleControl mechanism of the circadian clock for timing of cell division in vivo Science 302 IssueID5643 255–259 Occurrence Handle10.1126/science.1086271 Occurrence Handle1:CAS:528:DC%2BD3sXnvFWgt7k%3D Occurrence Handle12934012

    Article  CAS  PubMed  Google Scholar 

  61. L Fu H Pelicano J Liu P Huang CC. Lee (2002) ArticleTitleThe circadian gene period2 plays an important role in tumor suppression and DNA damage response in vivo Cell 111 41–50 Occurrence Handle10.1016/S0092-8674(02)00961-3 Occurrence Handle1:CAS:528:DC%2BD38XnvFCrtbw%3D Occurrence Handle12372299

    Article  CAS  PubMed  Google Scholar 

  62. GA Bjarnason RC Jordan RB. Sothern (1999) ArticleTitleCircadian variation in the expression of cell-cycle proteins in human oral epithelium Am J Pathol 154 IssueID2 613–622 Occurrence Handle1:CAS:528:DyaK1MXjtVCqt70%3D Occurrence Handle10027418

    CAS  PubMed  Google Scholar 

  63. S You Y Xiong M Kobayashi P Wood S Bickley M Simu J Quiton WJ. Hrushesky (2003) ArticleTitleTumor cell circadian clock genes are rhythmically expressed in coordination with rhythmic circadian growth and thereby may represent new therapeutic targets Clin Cancer Res 9 IssueID16 6126s

    Google Scholar 

  64. TK Darlington LC Lyons PE Hardin SA. Kay (2000) ArticleTitleThe period E-box is sufficient to drive circadian oscillation of transcription in vivo J Biol Rhythms 15 IssueID6 462–471 Occurrence Handle10.1177/074873000129001576 Occurrence Handle1:STN:280:DC%2BD3M7lvFCntQ%3D%3D Occurrence Handle11106063

    Article  CAS  PubMed  Google Scholar 

  65. A Farina C Gaetano M Crescenzi F Puccini I Manni A Sacchi G. Piaggio (1996) ArticleTitleThe inhibition of cyclin B1 gene transcription in quiescent NIH3T3 cells is mediated by an E-box Oncogene 13 IssueID6 1287–1296 Occurrence Handle1:CAS:528:DyaK28XmtFCgt7g%3D Occurrence Handle8808703

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. M. Hrushesky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, S., Wood, P.A., Xiong, Y. et al. Daily coordination of cancer growth and circadian clock gene expression. Breast Cancer Res Treat 91, 47–60 (2005). https://doi.org/10.1007/s10549-004-6603-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-004-6603-z

Keywords

Navigation