Skip to main content
Log in

A novel micropit device integrates automated cell positioning by dielectrophoresis and nuclear transfer by electrofusion

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Nuclear transfer (NT) cloning involves manual positioning of individual donor-recipient cell couplets for electrofusion. This is time-consuming and introduces operator-dependent variation as a confounding parameter in cloning trials. In order to automate the NT procedure, we developed a micro-fluidic device that integrates automated cell positioning and electrofusion of isolated cell couplets. A simple two layer micro-fluidic device was fabricated. Thin film interdigitated titanium electrodes (300 nm thick, 250 µm wide and 250 µm apart) were deposited on a solid borosilicate glass substrate. They were coated with a film of electrically insulating photosensitive epoxy polymer (SU-8) of either 4 or 22 µm thickness. Circular holes (“micropits”) measuring 10, 20, 30, 40 or 80 µm in diameter were fabricated above the electrodes. The device was immersed in hypo-osmolar fusion buffer and manually loaded with somatic donor cells and recipient oocytes. Dielectrophoresis (DEP) was used to attract cells towards the micropit and form couplets on the same side of the insulating film. Fusion pulses between 80 V and 120 V were applied to each couplet and fusion scored under a stereomicroscope. Automated couplet formation between oocytes and somatic cells was achieved using DEP. Bovine oocyte-oocyte, oocyte-follicular cells and oocyte-fibroblast couplets fused with up to 69% (n = 13), 50% (n = 30) and 78% (n = 9) efficiency, respectively. Fusion rates were comparable to parallel plate or film electrodes that are conventionally used for bovine NT. This demonstrates proof-of-principle that a micropit device is capable of both rapid cell positioning and fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DEP:

Dielectrophoresis

SCNT:

Somatic Cell Nuclear Transfer

References

  • M. M. Alkaisi, J. J. Muys, J. J. Evans, Bioimprint replication of single cells on a biochip, in BioMEMS and Nanotechnol. III, U212 (SPIE, 2007)

  • Y. H. Anis, M. R. Holl, D. R. Meldrum, Automated vision-based selection and placement of single cells in microwell array formats, in Autom. Sci. and Eng., 2008. CASE 2008. IEEE Int. Conf. on, 315 (2008)

  • W.M. Arnold, N.R. Franich, Cell isolation and growth in electric-field defined micro-wells. Curr. Appl. Phys. 6, 371 (2006)

    Article  Google Scholar 

  • W. Choi, J.S. Kim, D.H. Lee, K.K. Lee, D.B. Koo, J.K. Park, Dielectrophoretic oocyte selection chip for in vitro fertilization. Biomed. Microdevices 10, 337 (2008)

    Article  Google Scholar 

  • M.R. Davey, P. Anthony, J.B. Power, K.C. Lowe, Plant protoplasts: status and biotechnological perspectives. Biotechnol. Adv. 23, 131 (2005)

    Article  Google Scholar 

  • Y. Du, P.M. Kragh, X. Zhang, S. Purup, H. Yang, L. Bolund, G. Vajta, High overall in vitro efficiency of porcine handmade cloning (HMC) combining partial zona digestion and oocyte trisection with sequential culture. Cloning and Stem Cells 7, 199 (2005)

    Article  Google Scholar 

  • P. Gaynor, D. Wells, B. Oback, Couplet alignment and improved electrofusion by dielectrophoresis for a zona-free high-throughput cloned embryo production system. Med. Biol. Eng. Comput. 43, 150 (2005)

    Article  Google Scholar 

  • D.S. Gray, J.L. Tan, J. Voldman, C.S. Chen, Dielectrophoretic registration of living cells to a microelectrode array. Biosens. Bioelectron. 19, 1765 (2004)

    Article  Google Scholar 

  • T. Hayashi, H. Tanaka, J. Tanaka, R. Wang, B.J. Averbook, P.A. Cohen, S. Shu, Immunogenicity and therapeutic efficacy of dendritic-tumor hybrid cells generated by electrofusion. Clin. Immunol. 104, 14 (2002)

    Article  Google Scholar 

  • W. Hayt, Engineering Electromagnetics (McGraw-Hill, New York, 1967)

    Google Scholar 

  • T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  • R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, G.M. Whitesides, Patterning proteins and cells using soft lithography. Biomater. 20, 2363 (1999)

    Article  Google Scholar 

  • Y. Kimura, M. Gel, B. Techaumnut, K. Tsuda, H. Oana, H. Kotera, T. Tada, M. Washizu, High-yield parallel electro-fusion device based on field constriction at an orifice array. Proc. 12th Int. Conf. on Miniat. Syst. for Chem. and Life Sci. (MicroTAS), 540 (2008)

  • G. Kohler, C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495 (1975)

    Article  Google Scholar 

  • M. Lian, N. Islam, J. Wu, AC electrothermal manipulation of conductive fluids and particles for lab-chip applications. Nanobiotechnol., IET 1, 36 (2007)

    Article  Google Scholar 

  • S. Masuda, M. Washizu, T. Nanba, Novel method of cell fusion in field constriction area in fluid integrated circuit. IEEE Trans. Ind. Appl. 25, 732 (1989)

    Article  Google Scholar 

  • J. Muys, M.M. Alkaisi, J.J. Evans, J. Nagase, Biochip: cellular analysis by atomic force microscopy using dielectrophoretic manipulation. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap. 44, 5717 (2005)

    Google Scholar 

  • K. Nolkrantz, C. Farre, A. Brederlau, R.I.D. Karlsson, C. Brennan, P.S. Eriksson, S.G. Weber, M. Sandberg, O. Orwar, Electroporation of single cells and tissues with an electrolyte-filled capillary. Anal. Chem. 73, 4469 (2001)

    Article  Google Scholar 

  • B. Oback, D.N. Wells, Cloning cattle. Cloning and Stem Cells 5, 243 (2003)

    Article  Google Scholar 

  • B. Oback, A.T. Wiersema, P. Gaynor, G. Laible, F.C. Tucker, J.E. Oliver, A.L. Miller, H.E. Troskie, K.L. Wilson, J.T. Forsyth, M.C. Berg, K. Cockrem, V. McMillan, H.R. Tervit, D.N. Wells, Cloned cattle derived from a novel zona-free embryo reconstruction system. Cloning and Stem Cells 5, 3 (2003)

    Article  Google Scholar 

  • H.A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  • J. Schaper, H. Bohnenkamp, T. Noll, in Cell Technol. for Cell Prod., (2007), p.207

  • A.M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J. Voldman, Microfluidic control of cell pairing and fusion. Nat. Meth. 6, 147 (2009)

    Article  Google Scholar 

  • T. Suzuki, Y. Hirabayashi, I. Kanno, M. Washizu, H. Kotera, Assembly-free microfabrication process for multi-layered microfluidic networks using single-mask multidirectional photolithography. Proc. 12th Int. Conf. on Miniat. Syst. for Chem. and Life Sci. (MicroTAS), 363 (2008).

  • M. Tada, T. Tada, L. Lefebvre, S.C. Barton, M.A. Surani, Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. Embo J. 16, 6510 (1997)

    Article  Google Scholar 

  • M. Tada, Y. Takahama, K. Abe, N. Nakatsuji, T. Tada, Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553 (2001)

    Article  Google Scholar 

  • B. Techaumnat, M. Washizu, Analysis of the effects of an orifice plate on the membrane potential in electroporation and electrofusion of cells. J. Phys. D. Appl. Phys. 40, 1831 (2007)

    Article  Google Scholar 

  • B. Techaumnat, K. Tsuda, O. Kurosawa, G. Murat, M. Washizu, High-yield electrofusion of cells using electric-field constriction. 2007 Int. Symp. on Micro-Nano Mechatron. and Hum. Sci. 1 and 2, 38 (2007)

    Article  Google Scholar 

  • Y.-s. Torisawa, B. Mosadegh, G. D. Luker, S. Takayama, Hydrodynamic cellular patterning for 3D Co-culture. Proc. 12th Int. Conf. on Miniat. Syst. for Chem. and Life Sci. (MicroTAS), 27 (2008)

  • Z. Ulanowski, I.K. Ludlow, Compact optical trapping microscope using a diode laser. Meas. Sci. Technol. 11, 1778 (2000)

    Article  Google Scholar 

  • M. Washizu, T. Nanba, S. Masuda, Handling biological cells using a fluid integrated circuit. IEEE Trans. Ind. Appl. 26, 352 (1990)

    Article  Google Scholar 

  • D.N. Wells, P.M. Misica, H.R. Tervit, Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 60, 996 (1999)

    Article  Google Scholar 

  • I. Wilmut, A.E. Schnieke, J. McWhir, A.J. Kind, K.H.S. Campbell, Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810 (1997)

    Article  Google Scholar 

  • U. Zimmermann, G.A. Neil, Electromanipulation of Cells (CRC Press, Boca Raton, 1996)

    Google Scholar 

Download references

Acknowledgements

We thank T. Delaney, J. Oliver and J. Oswald for providing oocytes and somatic donor cells needed to carry out the fusion experiments and H. Deveraux and G.Turner for microfabrication technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Clow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clow, A.L., Gaynor, P.T. & Oback, B.J. A novel micropit device integrates automated cell positioning by dielectrophoresis and nuclear transfer by electrofusion. Biomed Microdevices 12, 777–786 (2010). https://doi.org/10.1007/s10544-010-9432-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9432-3

Keywords

Navigation