Skip to main content
Log in

Facile and highly efficient loading and freezing of cryoprotectants for oocyte vitrification based on planar microfluidics

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Vitrification is widely used in assisted reproduction technology via cell cryopreservation, which requires precise washing sequences and timings using several cryoprotectants (CPAs) to alleviate their osmotic shock. Compare with embryos, oocytes are more susceptible to osmotic stress and chemical toxicity and hence require more precise and complicated manual operations. In this paper, an automatic prototype system is established based on a novel planar microfluidic chip featuring superhydrophobic surfaces and poly-D-Lysine coating, which enables a single oocyte to be easily settled inside a ball-like droplet to facilitate the CPA exchange. Using the automatic equipment, the droplet concentration can be smoothly changed while maintaining a stable spherical shape. After the loading and removal of CPAs, the planar chip with an oocyte can be directly placed into liquid nitrogen for cryopreservation with similar oocyte survival rate as that obtained by manual operation. Compared with manual operation or other channel-based microfluidic technologies, this planar microfluidic method can avoid cell loss and the inconvenience of cell transfer and cryopreservation, which indicates its immense potential to serve as a facile and universal automatic solution for the vitrification of various precious cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arav A, Natan Y, Kalo D et al (2018) A new, simple, automatic vitrification device: preliminary results with murine and bovine oocytes and embryos. J Assist Reprod Genet 35(7):1161–1168

    Article  Google Scholar 

  • Aylin PC, Lale T, Emre S (2015) Oocyte cryopreservation as a preven-tive measure for age-related fertility loss. Semin Reprod Med 33(6):429–435

    Article  Google Scholar 

  • Bromfield JJ, Coticchio G, Hutt K et al (2009) Meiotic spindle dynamics in human oocytes following slow-cooling cryopreservation. Hum Reprod 24(9):2114–2123

    Article  Google Scholar 

  • Carroll J, Wood MJ, Whittingham DG (1993) Normal fertilization and development of frozen-thawed mouse oocytes: protective action of certain macromolecules. Biol Reprod 48(3):606–612

    Article  Google Scholar 

  • Chen Z, Memon K, Cao Y et al (2020) Amicrofluidic approach for synchronous andnondestructive study of the permeability ofmultiple oocytes. Microsyst Nanoeng 6(55):1–12

    Google Scholar 

  • Choi JK, Huang HS, He XM (2015) Improved low-CPA vitrification of mouse oocytes using quartz microcapillary. Cryobiology 70(3):269–272

    Article  Google Scholar 

  • Choi JK, El Assal R, Ng N et al (2018) Bio-inspired solute enables preservation of human oocytes using minimum volume vitrification. J Tissue Eng Regen Med 12(1):142–149

    Article  Google Scholar 

  • Clark NA, Swain JE (2013) Oocyte cryopreservation: searching for novel improvement strategies. J Assist Reprod Genet 30(7):865–875

    Article  Google Scholar 

  • Colombo M, Luvoni G (2020) Minimum volume vitrification of immature feline oocytes. Jove-J Visual Exp 160:e61523

    Google Scholar 

  • dos Santos-Neto PC, Cuadro F, Barrera N et al (2017) Embryo survival and birth rate after minimum volume vitrification or slow freezing of in vivo and in vitro produced ovine embryos. Cryobiology 78:8–14

    Article  Google Scholar 

  • Hanson B, Johnstone E, Dorais J et al (2017) Female infertility, infertility-associated diagnoses, and comorbidities: a review. J Assist Reprod Genet 34(2):167–177

    Article  Google Scholar 

  • Jadoon S, Adeel M (2015) Cryopreservation of oocytes. J Ayub Med College Abbottabad: JAMC 27(1):22–28

    Google Scholar 

  • Jain John K, Paulson RJ (2006) Oocyte cryopreservation. Fertil Steril 86(3):1037–1046

    Article  Google Scholar 

  • Joseph S, Amir A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141(1):1–19

    Article  Google Scholar 

  • Karlsson JM, Szurek EA, Higgins AZ et al (2014) Optimization of cryoprotectant loading into murine and human oocytes. Cryobiology 68(1):18–28

    Article  Google Scholar 

  • Kohaya N, Fujiwara K, Ito J et al (2013) Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain. PLoS ONE 8:e58063

    Article  Google Scholar 

  • Kuleshova LL, Lopata A (2002) Vitrification can be more favorable than slow cooling. Fertil Steril 78(3):449–454

    Article  Google Scholar 

  • Kuwayama M, Vajta G, Kato O et al (2005) Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 11(3):300–308

    Article  Google Scholar 

  • Lai D, Ding J, Smith GW et al (2015) Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Human Repro 30(1):37–45

    Article  Google Scholar 

  • Lane M, Gardner DK (2001) Vitrificaiton of mouse oocytes using a Nylon Loop. Mol Reprod Dev 58(3):342–347

    Article  Google Scholar 

  • Lei Z, Xie D, Karmah MM et al (2019) A microfluidic platform with cell-scale precise temperature control for simultaneous investigation of theosmotic responses of multiple oocytes. Lab Chip 19:1929–1940

    Article  Google Scholar 

  • Lim SM, Yap AU, Loo CSL et al (2017) Comparison of cytotoxicity test models for evaluating resin-based composites. Hum Exp Toxicol 36(4):339–348

    Article  Google Scholar 

  • Mahmoud M, Juan S, Xuehong Z et al (2014) Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives. Sci China Life Sci 57(9):903–914

    Article  Google Scholar 

  • Mandawala AA, Harvey SC, Roy TK et al (2011) Cryopreservation of animal oocytes and embryos: current progress and future prospects. Therlogenology 86(7):1637–1644

    Article  Google Scholar 

  • Miwa A, Noguchi Y, Hosoyal K et al (2020) Equivalent clinical outcome after vitrified-thawed blastocyst transfer using semi-automated embryo vitrification system compared with manual vitrification method. Reprod Med Biol 19(2):164–170

    Article  Google Scholar 

  • Mohr LR, Trounson AO (1980) Use of fluorescein diacetate to assess embryo viability in the mouse. J Reprod Fertil 58(1):189–196

    Article  Google Scholar 

  • Moussa M, Shu J, Zhang X et al (2014) Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives. Sci China Life Sci 57(9):903–914

    Article  Google Scholar 

  • Neelke DM, Gabor V (2017) Safety and efficiency of oocyte vitrification. Cryobiology 78:119–127

    Article  Google Scholar 

  • Paynter SJ (2000) Current status of the cryopreservation of human unfertilized oocytes. Hum Reprod Update 6(5):449–456

    Article  Google Scholar 

  • Pierre M (2013) Development in IVF legislation in a Catholic Country. Med Health Care Philos 16(3):385–390

    Article  Google Scholar 

  • Pyne GG, Liu J, Abdelgawad M et al (2014) Digital microfluidic processing of mammalian embryos for vitrification. PLoS ONE 9(9):e108128

    Article  Google Scholar 

  • Rall W, Fahy G (1985) Ice-free cryopreservation of mouse embryos at -196℃ by vitrification. Nature 313(6003):573–575

    Article  Google Scholar 

  • Roy TK, Brandi S, Tappe NM et al (2014) Embryo vitrification using a novel semi-automated closed system yields in vitro outcomes equivalent to the manual Cryotop method. Hum Reprod 29(11):2431–2438

    Article  Google Scholar 

  • Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141(1):1–19

    Article  Google Scholar 

  • Scherr T, Knapp GL, Guitreau A et al (2015) Microfluidics and numerical simulation as methods for standardization of zebrafish sperm cell activation. Biomed Microdev 17(3):65

    Article  Google Scholar 

  • Setti PE, Porcu E, Patrizio P et al (2014) Human oocyte cryopreservation with slow freezing versus vitrification results from the National Italian Registry data2007-2011. Fertil Steril 102(1):90–95

    Article  Google Scholar 

  • Smith GD, Takayama S (2017) Application of microfluidic technologies to human assisted reproduction. Mole Hum Reprod 23(4):257–268

    Google Scholar 

  • Smith GD, Takayama S (2019) Cryopreservation and microfluidics: a focus on the oocyte. Reprod Fertil Dev 31(1):93–104

    Article  Google Scholar 

  • Song YS, Moon SJ, Hulli L et al (2009) Microfluidics for cryopreservation. Lab Chip 9(13):1874–1881

    Article  Google Scholar 

  • Takahashi N, Harada M, Oi N et al (2020) Preclinical validation of the new vitrification device possessing a feature of absorbing excess vitrification solution for the cryopreservation of human embryos. J Obstet Gynaecol Res 46(2):302–309

    Google Scholar 

  • Trounson A, Mohr L (1983) Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305(5936):707–709

    Article  Google Scholar 

  • Weng L (2019) IVF-on-a-chip: recent advances in microfluidics technology for in vitro fertilization. Slas Technol 24(4):373–385

    Article  Google Scholar 

  • Wong WSY, Nasiri N, Liu GY et al (2015) Flexible transparent hierarchical nanomesh for rose petal-like droplet manipulation and lossless transfer. Adv Mater Interf 2(9):1500071

    Article  Google Scholar 

  • Yeh K-Y, Chen L-J, Chang J-Y (2008) Contact angle hysteresis on regular pillar-like hydrophobic surfaces. Langmuir 24(1):245–251

    Article  Google Scholar 

  • Yuan LF, Wu TZ, Zhang WJ et al (2014) Engineering superlyophobic surfaces on curable materials based on facile and inexpensive microfabrication. J Mater Chem A 2:6952–6959

    Article  Google Scholar 

  • Yun SH, Ho JL, Bryan AH et al (2011) Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip 11(20):3530–3537

    Article  Google Scholar 

  • Zhang X, Catalano PN, Umut A et al (2011) Emerging technologies in medical applications of minimum volume vitrification. Nanomedicine 6(6):1115–1129

    Article  Google Scholar 

  • Zhao G, Jianping Fu (2017) Microfluidics for cryopreservation. Biotechnol Adv 35(2):323–336

    Article  Google Scholar 

  • Zhao G, Zhang Z, Zhang Y (2017) A microfluidic perfusion approach for on –chip characterization of the transport properties of human oocytes. Lab Chip 17(7):1297–1305

    Article  Google Scholar 

  • Zhou X, Yi X, Zhou N et al (2016) Design and optimization of microfluidic chips used for mixing cryoprotectants. J Biomed Eng 33(3):461–465

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was financially supported by National Natural Science Foundation of China (61875221), Guangdong Science and Technology Research Program (2015B020227002, 2016B020238003), Shenzhen Science and Technology Research Program (JCYJ20170818152810899, JSGG20170824170930929 and JSGG20170112154335340) and CAS Key Laboratory on Health Bioinformatics (2011DP173015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Chen or Tianzhun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Huang, B., Cai, G. et al. Facile and highly efficient loading and freezing of cryoprotectants for oocyte vitrification based on planar microfluidics. Microfluid Nanofluid 25, 63 (2021). https://doi.org/10.1007/s10404-021-02462-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-021-02462-7

Keywords

Navigation