Skip to main content
Log in

Winter CO2 fluxes in a sub-alpine grassland in relation to snow cover, radiation and temperature

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) emissions were measured over a period of 3 years at the sub-alpine Swiss CARBOMONT site Rigi Seebodenalp. Here we show, that winter respiration contributes larger than expected to the annual CO2 budget at this high altitude, rich in belowground organic carbon grassland (7–15% C by mass). Furthermore the contribution of winter emissions to the annual CO2 budget is highly dependent on the definition of “winter” itself. Cumulative winter respiration determined over a 6 month period from 15th of October until 15th of April contributed 23.3 ± 2.4 and 6.0 ± 0.3% to the annual respiration during the years under observation, respectively. The insulation effect of snow and a lowering of the freezing point caused by high concentrations of soil organic solutes prevented the soil from freezing. These conditions favored higher soil temperatures resulting in relatively high respiratory losses. The duration of snow cover and micrometeorological conditions determining the photosynthetic activity of the vegetation during snow-free periods influenced the size and the variability of the winter CO2 fluxes. Seasonal values are strongly influenced by the days at the end and the beginning of the defined winter period, caused by large variations in length of periods with air temperatures below freezing. Losses of CO2 from the snow-covered soil were highest in winter 2003/2004. These high losses were partially explained by higher temperatures in the topsoil, caused by higher air temperatures just before snowfall. Thus, losses are not a consequence of higher soil temperatures registered during the summer heat wave 2003. However, water stress in summer 2003 might have caused an increment in dead organic matter in the soil providing additional substrate for microbial respiration in the following winter. Although considerable day-to-day fluctuations in snow effluxes were recorded, no conclusive and generally valid relationship could be found between CO2 losses from the snow pack and snow depth, rate of snow melt, wind speed or air pressure. This suggests that time lags and hysteresis effects may be more important for understanding winter respiration than concurrent environmental conditions in most ecosystems of comparable type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer Ch, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard C, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen JP (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys Res Lett 31(16):4

    Article  Google Scholar 

  • Aurela M, Lohila A, Tuovinen JP, Hatakka J, Riutta T, Laurila T (2009) Carbon dioxide exchange on a northern boreal fen. Boreal Environ Res 14(4):699–710

    Google Scholar 

  • Baldocchi DD (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Article  Google Scholar 

  • Baldocchi DD, Bowling DR (2003) Modelling the discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly and seasonal time scales. Plant Cell Environ 26(2):231–244

    Article  Google Scholar 

  • Baldocchi DD, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, KTP U, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  • Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia 110(3):403–413

    Google Scholar 

  • Brooks PD, McKnight D, Elder K (2004) Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Glob Change Biol 11:231–238

    Article  Google Scholar 

  • Bubier J, Crill P, Mosedale A (2002) Net ecosystem CO2 exchange measured by autochambers during the snow-covered season at a temperate peatland. Hydrol Process 16(18):3667–3682

    Article  Google Scholar 

  • Cernusca A, Bahn M, Berninger F, Tappeiner U, Wohlfahrt G (2008) Effects of land-use changes on sources, sinks and fluxes of carbon in European mountain grasslands. Ecosystems 11(8):1335–1337. doi:10.1007/s10021-008-9202-8

    Article  Google Scholar 

  • Christensen TR, Friborg T, Sommerkorn M, Kaplan J, Illeris L, Soegaard H, Nordstroem C, Jonasson S (2000) Trace gas exchange in a high-arctic valley 1. Variations in CO2 and CH4 flux between tundra vegetation types. Glob Biogeochem Cycles 14(3):701–713

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533

    Article  Google Scholar 

  • Edwards AC, Cresser MS (1992) Freezing and its effect on chemical and biological properties of soil. In: Stewart BA (ed) Advances in soil science, vol 18. Springer, New York, pp 59–79

  • Eugster W, Senn W (1995) A cospectral correction model for measurement of turbulent NO2 flux. Boundary-Layer Meteorol 74(4):321–340

    Article  Google Scholar 

  • Fahnestock JT, Jones MH, Welker JM (1999) Wintertime CO2 efflux from arctic soils: implications for annual carbon budgets. Glob Biogeochem Cycles 13(3):775–779

    Article  Google Scholar 

  • Flanagan LB, Wever LA, Carlson PJ (2002) Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob Change Biol 8(7):599–615

    Article  Google Scholar 

  • Frank AB, Dugas WA (2001) Carbon dioxide fluxes over a northern, semiarid, mixed-grass prairie. Agric For Meteorol 108(4):317–326

    Article  Google Scholar 

  • Franzluebbers AJ, Haney RL et al (2000) Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Sci Soc Am J 64(2):613–623

    Article  Google Scholar 

  • Gilmanov TG, Johnson DA, Saliendra NZ (2003) Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: bowen ratio/energy balance measurements and modeling. Basic Appl Ecol 4(2):167–183

    Article  Google Scholar 

  • Gilmanov TG, Johnson DA, Saliendra NZ, Svejcar TJ, Angell RF, Clawson KL (2004) Winter CO2 fluxes above sagebrush-steppe ecosystems in Idaho and Oregon. Agric For Meteorol 126(1–2):73–88

    Article  Google Scholar 

  • Grogan P, Illeris L, Michelsen A, Jonasson S (2001) Respiration of recently-fixed plant carbon dominates mid-winter ecosystem CO2 production in sub-arctic heath tundra. Clim Change 50(1–2):129–142

    Article  Google Scholar 

  • Haebleri W (1973) Die Basis-Temperatur der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost in den Alpen. Zietschrift für Gletscherkunde und Glazialgeologie XI(1–2):221–227

    Google Scholar 

  • Ham JM, Knapp AK (1998) Fluxes of CO2, water vapor and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source. Agric For Meteorol 89(1):1–14

    Article  Google Scholar 

  • Hardy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman AT, Demers JD, Fahey TJ, Driscoll CT, Tierney GL, Nolan S (2001) Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry 56(2):151–174

    Article  Google Scholar 

  • Hirano T (2005) Seasonal and diurnal variations in topsoil and subsoil respiration under snowpack in a temperate deciduous forest. Glob Biogeochem Cycles 19:GB2011. doi:10.1029/2004GB002259

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Global Chang Biol 6:196–210. doi:10.1046/j.1365-2486.2000.06021.x

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Cambridge

  • Johnson PL, Kelley JJ (1970) Dynamics of carbon dioxide and productivity in an arctic biosphere. Ecology 51(1):51:73–80. doi:10.2307/1933600

    Google Scholar 

  • Jones MH, Fahnestock JT, Walker DA, Walker MD, Welker JM (1998) Carbon dioxide fluxes in moist and dry arctic tundra during season: responses to increases in summer temperature and winter snow accumulation. Arct Alp Res 30(4):373–380

    Article  Google Scholar 

  • Jones MH, Fahnestock JT, Welker JM (1999) Early and late winter CO2 efflux from arctic tundra in the Kuparuk River watershed, Alaska, USA. Arct Antarct Alp Res 31(2):187–190

    Article  Google Scholar 

  • Kelley JJ, Weaver DF, Smith BP (1968) Variation of carbon dioxide under snow in the arctic. Ecology 49(2):358–361

    Article  Google Scholar 

  • Kutzbach L, Wille C, Pfeiffer EM (2007) The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia. Biogeosciences 4(5):869–890. doi:10.5194/bg-4-869-2007

    Article  Google Scholar 

  • Lafleur PM, Humphreys ER (2008) Spring warming and carbon dioxide exchange over low arctic tundra in central Canada. Glob Change Biol 14(4):740–756

    Article  Google Scholar 

  • Lafleur PM, Roulet NT, Admiral SW (2001) Annual cycle of CO2 exchange at a bog peatland. J Geophys Res Atmos 106(D3):3071–3081

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modeling Nr.20 (2nd edn). Elsevier, Amsterdam

  • Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, Urano T, Oikawa T, Davaa G, Oyunbaatar D, Sugita M (2005) Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Glob Change Biol 11(11):1941–1955

    Google Scholar 

  • Liptzin D, Williams MW, Helmig D, Seok B, Filippa G, Chowanski K, Hueber J (2009) Process-level controls on CO2 fluxes from seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado. Biogeochemistry 95:151–166. doi:10.1007/s10533-009-9303-2

    Article  Google Scholar 

  • Luetsch M, Stoeckli V, Lehning M, Haeberli W, Ammann W (2004) Temperatures in two boreholes at Fluela Pass, Eastern Swiss Alps: the effect of snow redistribution on permafrost distribution patterns in high mountain areas. Permafr Periglac Process 15(3):283–297

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303(5663):1499–1503

    Article  Google Scholar 

  • Mariko S, Nishimura N, Mo WH, Matsui Y, Kibe T, Koizumi H (2000) Winter CO2 flux from soil and snow surfaces in a cool-temperate deciduous forest, Japan. Ecol Res 15(4):363–372

    Article  Google Scholar 

  • Mast MA, Wickland KP, Striegl RT, Clow DW (1998) Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Glob Biogeochem Cycles 12(4):607–620. doi:10.1029/98GB02313

  • Mauder M, Foken T, Clement R, Elbers A, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data. Part 2: inter-comparison of eddy-covariance software. Biogeosciences 5:451–462. doi:10.5194/bg-5-451-2008,2008

    Article  Google Scholar 

  • McMillen RT (1988) An eddy-correlation technique with extend applicability to non-simple terrain. Boundary-Layer Meteorol 43(3):231–245

    Article  Google Scholar 

  • Merbold L, Kutsch WL, Corradi C, Kolle O, Rebmann C, Stoy PC, Zimov SA, Schulze ED (2009) Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem. Glob Change Biol 15(11):2599–2614

    Article  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biogeochem 34(11):1785–1795

    Article  Google Scholar 

  • Müller (2004) Bodenatmung auf der Seebodenalp während der Vegetationsperiode 2003. Master’s thesis, Institute of Geography, University of Bern

  • Nadelhoffer KJ, Giblin AE et al (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72(1):242–253

    Article  Google Scholar 

  • Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of arctic tundra ecosystems from a net carbon-dioxide sink to a source. Nature 361(6412):520–523

    Article  Google Scholar 

  • Oechel WC, Vourlitis G, Hastings SJ (1997) Cold season CO2 emission from arctic soils. Glob Biogeochem Cycles 11(2):163–172

    Article  Google Scholar 

  • Osterkamp TE, Romanovsky VE (1997) Freezing of the active layer on the coastal plain of the Alaskan Arctic. Permafr Periglac Process 8(1):23–44

    Article  Google Scholar 

  • Panikov NS, Dedysh SN (2000) Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): winter fluxes and thaw activation dynamics. Glob Biogeochem Cycles 14(4):1071–1080

    Article  Google Scholar 

  • Prieme A, Christensen S (2001) Natural perturbations, drying-wetting and freezing-thawing cycles, and the emissions of nitrous oxide, carbondioxide and methane from farmed organic soils. Soil Biol Biogeochem 33(15):2083–2091

    Article  Google Scholar 

  • Reichstein M, Rey A, Freibauer A et al (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob Biogeochem Cycles 17:1104. doi:10.1029/2003GB002035

    Article  Google Scholar 

  • Reichstein M, Subke JA, Angeli AC, Tenhunen JD (2005) Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Glob Change Biol 11:1754–1767

    Article  Google Scholar 

  • Reutlinger F (2004) Zusammensetzung und Produktivität der Weidevegetation am Standort Seebodenalp. Master’s thesis, Institute of Plant Sciences, ETH Zürich

  • Rogiers N, Eugster W, Furger M, Siegwolf R (2005) Effect of land management on ecosystem carbon fluxes at a subalpine grassland site in the Swiss Alps. Theor Appl Climatol 80(2–4):187–203

    Article  Google Scholar 

  • Rogiers N, Conen F, Furger M, Stöckli R, Eugster W (2008) Impact of past and present land-management on the C-balance of a grassland in the Swiss Alps. Glob Change Biol 14(11):2613–2625

    Google Scholar 

  • Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: a review. In: Begon M, Fitter AH (eds) Advances in ecological research. Academic Press, New York, pp 1–68

    Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301(5638):1359–1361

    Article  Google Scholar 

  • Schär C, Jendritzky G (2004) Hot news from summer 2003. Nature 432:559–560

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger M, Appenzeller C (2004) The role of increasing temperature variability in European summer heat waves. Nature 427:332–336

    Google Scholar 

  • Schimel JP, Clein JS (1996) Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol Biochem 28(8):1061–1066

    Article  Google Scholar 

  • Schimel D, Kittel TGF, Running S, Monson R, Turnispeed AA, Anderson DE (2002) Carbon sequestration studied in western U.S. mountains. EOS Trans Am Geophys Union 83(40):445

    Article  Google Scholar 

  • Schmid HP, Grimmond CSB, Cropley F, Offerle B, Su HB (2000) Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric For Meteorol 103(4):357–374

    Article  Google Scholar 

  • Schmidt DS, Schmidt RA, Dent JD (1999) Electrostatic force in blowing snow. Boundary-Layer Meteorol 93:29–45

    Article  Google Scholar 

  • Sevanto S, Suni T, Pumpanen J, Grönholm T, Kolari P, Nikinmaa E, Hari P, Vesala T (2006) Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol 26:749–757

    Google Scholar 

  • Shibistova O, Lloyd J, Evgrafova S, Savushkina N, Zrazhevskaya G, Arneth A, Knohl A, Kolle O, Schulze ED (2002) Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus B Chem Phys Meteorol 54(5):552–567

    Article  Google Scholar 

  • Skogland T, Lomeland S, Goksoyr J (1988) Respiratory burst after freezing and thawing of soil: experiments with soil bacteria. Soil Biol Biogeochem 20(6):851–856

    Article  Google Scholar 

  • Sommerfeld RA, Mosier RA, Musselmann RC (1993) CO2, CH4, N2O flux through a Wyoming snowpack and implications for global budgets. Nature 361(6408):140–142

    Article  Google Scholar 

  • Sommerfeld RA, Massman WJ, Musselman RC, Mosier AR (1996) Diffusional flux of CO2 through snow: spatial and temporal variability among alpine-subalpine sites. Glob Biogeochem Cycles 10(3):473–482

    Article  Google Scholar 

  • Suni T, Rinne J, Reissell A, Altimir N, Keronen P, Rannik Ü, Dal Maso M, Kulmala M, Vesala T (2003) Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, Southern Finland, 1996–2001. Boreal Environ Res 8(4):287–301

    Google Scholar 

  • Suyker AE, Verma SB (2001) Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Glob Change Biol 7(3):279–289

    Article  Google Scholar 

  • Swanson AL, Lefer BL, Stroud V, Atlas E (2005) Trace gas emissions through a winter snowpack in the subalpine ecosystem at Niwot Ridge, Colorado. Geophys Res Lett 32(3):5

    Article  Google Scholar 

  • Vogel A, Hantke R (1989) Rigi: Zur Geologie des Rigigebietes. Mitteilungen der Naturforschenende Gesellschaft (Luzern)

  • Volk M, Niklaus PA (2002) Respiratory carbon loss of calcareus grasslands in winter shows no effect of 4 years’ CO2 enrichment. Funct Ecol 16(2):162–166

    Article  Google Scholar 

  • Vourlitis GL, Oechel WC (1999) Eddy covariance measurements of CO2 and energy fluxes of an Alaskan tussock tundra ecosystem. Ecology 80(2):686–701

    Article  Google Scholar 

  • Walker MD, Walker DA, Welker JM, Arft AM, Bardsley T, Brooks PD, Fahnestock JT, Jones MH, Losleben M, Parsons AN, Seastedt TR, Turner PL (1999) Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra. Hydrol Process 13(14–15):2315–2330

    Article  Google Scholar 

  • Wang T, Ciais P, Piao SL, Ottlé C, Brender P, Maignan F, Arain A, Cescatti A, Gianelle D, Gough C, Gu L, Lafleur P, Laurila T, Marcolla B, Margolis H, Montagnani L, Moors E, Saigusa N, Vesala T, Wohlfahrt G, Koven C, Black A, Dellwik E, Don A, Hollinger D, Knohl A, Monson R, Munger J, Suyker A, Varlagin A, Verma S (2011) Controls on winter ecosystem respiration in temperate and boreal ecosystems. Biogeosciences 8:2009–2025. doi:10.5194/bg-8-2009-2011

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106:85–100

    Article  Google Scholar 

  • Welker JM, Fahnestock JT, Jones MH (2000) Annual CO2 flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth. Clim Change 44(1–2):139–150

    Article  Google Scholar 

  • Wickland KP, Striegl RG, Mast MA, Clow DW (2001) Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998. Glob Biogeochem Cycles 15(2):321–335

    Article  Google Scholar 

  • Winston GC, Sundquist ET, Stephens BB, Trumbore SE (1997) Winter CO2 fluxes in a boreal forest. J Geophys res-Atmos 102:28795–28804. doi:10.1029/97JD01115

    Google Scholar 

  • Zeeman MJ, Hiller R, Gilgen AK, Michna P, Plüss P, Buchmann N, Eugster W (2010) Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agric For Meteorol 150(4):519–530

    Article  Google Scholar 

  • Zhuang QL, Melillo JM, Sarofim MC, Kicklighter DW, McGuire AD, Felzer BS, Sokolov A, Prinn RG, Steudler PA, Hu SM (2006) CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys Res Lett 33(17):L17403

    Google Scholar 

  • Zimov SA, Semiletov IP, Davidov SP, Voropaev YV, Prosyannikov CF, Wong SC, Chan YH (1993) Wintertime CO2 emission from soil of northeastern Siberia. Arctic 46:197–204

    Google Scholar 

  • Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS (2006) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys Res Lett 33(20):L20502

    Google Scholar 

Download references

Acknowledgments

The Swiss Federal Office for Education and Science, grant BBW 01.0319-1 financially supported our contribution to CARBOMONT. We thank the Swiss Federal Institute for Snow and Avalanche Research (SLF) for providing information on snow depth. The co-operation with and support from the land-owning “Korporation Berg und Seeboden” was highly appreciated. We thank René Richter, Markus Furger and Rolf Siegwolf for their technical help and assistance in the field. Special thanks go to Urs Baltensperger, André Prévôt and Ivan Janssens for their valuable comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Merbold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merbold, L., Rogiers, N. & Eugster, W. Winter CO2 fluxes in a sub-alpine grassland in relation to snow cover, radiation and temperature. Biogeochemistry 111, 287–302 (2012). https://doi.org/10.1007/s10533-011-9647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9647-2

Keywords

Navigation