Skip to main content
Log in

Statistical medium optimization and biodegradative capacity of Ralstonia eutropha toward p-nitrophenol

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The effect of p-nitrophenol (PNP) concentration with or without glucose and yeast extract on the growth and biodegradative capacity of Ralstonia eutropha was examined. The chemical constituents of the culture medium were modeled using a response surface methodology. The experiments were performed according to the central composite design arrangement considering PNP, glucose and yeast extract as the selected variables whose influences on the degradation was evaluated (shaking in reciprocal mode, temperature of 30°C, pH 7 and test time of about 9 h). Quadratic polynomial regression equations were used to quantitatively explain variations between and within the models (responses: the biodegradation capacity and the biomass formation). The coefficient of determination was high (R 2adjusted  = 0.9783), indicating the constructed polynomial model for PNP biodegradative capacity explains the variation between the regressors fairly well. A PNP removal efficiency of 74.5% occurred within 9 h (15 mg/L as the initial concentration of PNP with use of yeast extract at 0.5 g/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PNP:

p-nitrophenol

LC:

Liquid culture

RSM:

Response surface methodology

CCD:

Central composite design

NAs:

Nitroaromatics

NADPH:

Nicotinamide adenine dinucleotide phosphate

References

  • Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mehranian M (2006) Empirical modeling of olive oil mill wastewater treatment using loofa-immobilized Phanerochaete chrysosporium. Proc Biochem 41:1148–1154

    Article  CAS  Google Scholar 

  • Andreev J, Dibrov PA, Braun S (1994) Motility and chemotaxis in Bacillus sphaericus dependence upon stage of growth. FEBS Lett 349:411–415

    Article  CAS  PubMed  Google Scholar 

  • Baranyi J, Roberts TA (1995) Mathematics of predictive microbiology. Int J Food Microbiol 26:199–218

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Chauhan A, Samanta SK, Jain RK (2000a) Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochem Biophys Res Commun 274:626–630

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Samanta SK, Chauhan A, Chakraborti AK, Jain RK (2000b) Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem Biophys Res Commun 275:129–133

    Article  CAS  PubMed  Google Scholar 

  • Ecker S, Widmann T, Lenke H, Dickel O, Fischer P, Bruhn C, Knackmuss HJ (1992) Catabolism of 2, 6-dinitrophenol by Alcaligenes eutrophus JMP 134 and JMP 222. Arch Microbiol 158:149–154

    Article  CAS  Google Scholar 

  • Fristedt U, Weinander R, Martinsson HS, Persson BL (1999) Characterization of purified and unidirectionally reconstituted Pho84 phosphate permease of Saccharomyces cerevisiae. FEBS Lett 458:1–5

    Article  CAS  PubMed  Google Scholar 

  • Geeraerd AH, Valdramidis VP, Devlieghere F, Bernaert H, DeDebevere J, Van Impe JF (2004) Development of a novel approach for secondary modeling in predictive microbiology: incorporation of microbiological knowledge in black box polynomial modeling. Int J Food Microbiol 91:229–244

    Article  CAS  PubMed  Google Scholar 

  • Gemini VL, Gallego A, de Oliveira VM, Gomez CE, Manfio GP, Korol SE (2005) Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis. Int Biodeterior Biodegrad 55:103–108

    Article  CAS  Google Scholar 

  • Heitkamp MA, Camel V, Reuter TJ, Adams WJ (1990) Biodegradation of p-nitrophenol in an aqueous waste stream by immobilized bacteria. Appl Environ Microbiol 56:2967–2973

    CAS  PubMed  Google Scholar 

  • Keweloh H, Heipieper HJ (1996) Trans unsaturated fatty acids in bacteria. Lipids 31:129–137

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni M, Chaudhari A (2006) Biodegradation of p-nitrophenol by P. putida. Bioresour Technol 97:982–988

    Article  CAS  PubMed  Google Scholar 

  • Lapin LL (1997) Modern engineering statistics. Belmont, CA, USA, Wardsworth Publishing Company, ISBN 0-534-50883-9

  • Leonard D, Lindley N (1999) Growth of Ralstonia eutropha on inhibitory concentrations of phenol: diminished growth can be attributed to hydrophobic perturbation of phenol hydroxylase activity. Enzyme Microb Technol 25:271–277

    Article  CAS  Google Scholar 

  • Marvin-Sikkema FD, Bont JAM (1994) Degradation of nitroaromatic compounds by microorganisms. Appl Microbiol Biotechnol 42:499–507

    Article  CAS  PubMed  Google Scholar 

  • Mc Meekin TA, Olley J, Ratkowsky DA, Ross T (2002) Predictive microbiology: towards the interface and beyond. Int J Food Microbiol 73:395–407

    Article  CAS  Google Scholar 

  • Muller RH, Babel W (1996) Growth rate-dependent expression of phenol-assimilation pathways in Alcaligenes eutrophus JMP 134–the influence of formate as an auxiliary energy source on phenol conversion characteristics. Appl Microbiol Biotechnol 46:156–162

    Article  Google Scholar 

  • Muller S, Bley T, Babel W (1999) Adaptive responses of Ralstonia eutropha to feast and famine conditions analysed by flow cytometry. J Biotechnol 75:81–97

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Chauhan A, Samanta SK, Jain RK (2002) Chemotaxis of a Ralstonia sp. SJ98 toward co-metabolizable nitroaromatic compounds. Biochem Biophys Res Commun 299:404–409

    Article  CAS  PubMed  Google Scholar 

  • Raymond DGM, Alexander M (1971) Microbial metabolism and cometabolism of nitrophenols. Pest Biochem Physiol 1:123–130

    Article  CAS  Google Scholar 

  • Samanta SK, Bhushan B, Chauhan A, Jain RK (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269:117–123

    Article  CAS  PubMed  Google Scholar 

  • Schenzle A, Lenke H, Fischer P, Williams PA, Knackmuss HJ (1997) Catabolism of 3-nitrophenol by Ralstonia eutropha JMP 134. Appl Environ Microbiol 63:1421–1427

    CAS  PubMed  Google Scholar 

  • Schmidt SK, Scow MK, Alexander M (1987) Kinetics of p-nitrophenol mineralization by a Pseudomonas sp.: effects of second substrates. Appl Environ Microbiol 53:617–623

    Google Scholar 

  • Sharma P, Singh L, Dilbaghi N (2009) Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius. J Hazard Mater 161:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Shen J, He R, Yu H, Wang L, Zhang J, Sun X, Li J, Han W, Xu L (2009) Biodegradation of 2, 4, 6-trinitrophenol (picric acid) in a biological aerated filter (BAF). Bioresour Technol 100:1922–1930

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki Y, Kimura N, Nakahara T (2002) Difference in degrading p-nitrophenol between indigenous bacteria in a reactor. J Biosci Bioeng 93:512–519

    CAS  PubMed  Google Scholar 

  • Simkins S, Alexander M (1984) Models for mineralization kinetics with the variables of substrate concentration and population density. Appl Environ Microbiol 47:1299–1306

    CAS  PubMed  Google Scholar 

  • Stanier RY, Adelberg EA, Ingraham J (1976) The microbial word, 4th edn. ISBN 0-13-581025-6

  • Vining GG (2003) Statistical methods for engineers. Pacific Grove, CA, USA: Brooks/Cole Publishing Company. ISBN 0-534-23706-1

  • Wan N, Gu JD, Yan Y (2007) Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. Int Biodetrior Biodegrad 59:90–96

    Article  CAS  Google Scholar 

  • Xiarchos I, Jaworska A, Zakrzewska-Trznadel G (2008) Response surface methodology for the modeling of copper removal from aqueous solutions using micellar-enhanced ultrafiltration. J Membr Sci 321:222–231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Vahabzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi, Z., Vahabzadeh, F., Sohrabi, M. et al. Statistical medium optimization and biodegradative capacity of Ralstonia eutropha toward p-nitrophenol. Biodegradation 21, 645–657 (2010). https://doi.org/10.1007/s10532-010-9332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9332-5

Keywords

Navigation