Skip to main content
Log in

Retention of N and P by zebra mussels (Dreissena polymorpha Pallas) and its quantitative role in the nutrient budget of eutrophic Lake Ekoln, Sweden

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

We quantified cover, population densities, size distribution and biomass of zebra mussels along 7 transects in eutrophic Lake Ekoln (Sweden). We also analyzed the elemental (C, N, P) composition of zebra mussel soft tissue and computed their retention rates of N and P their quantitative role in the lake’s nutrient budget. We hypothesized that zebra mussels play an important role in the nutrient budget of the lake and speculate that the successive harvesting of cultured mussels could contribute to the lake’s rate of recovery from cultural eutrophication. At depths exceeding 5 m, mussels covered consistently less than 5% or were absent. Similarly, mean densities were 3,158 ± 2,143 ind m−2 between 2 and 4 m, but rapidly declined at larger depths. Calculated clearance rates averaged 19.4 ± 2.3 km3 y−1, implying the entire lake is filtered every 8–10 days. Concentrations of N and P in mussel soft tissue averaged 100.9 ± 1.5 mg N g−1 DW and 9.3 ± 0.2 mg P g−1 DW. The lake population was estimated to 22.2 ± 2.6 × 1010 mussels, corresponding to a standing stock biomass of 362 ± 42 ton DW, or conservative estimates of 36.6 ± 4.3 ton N and 3.4 ± 0.4 ton P. Assuming a life span of 2–3 years gives a retention estimate of 1.2–1.8 ton P y−1 by mussels, corresponding to 50–77% of the annual P influx from Uppsala sewage treatment plant to the lake. Similarly, annual N-retention by zebra mussels makes up 13–20 ton N y−1, largely equaling the annual N-deposition from atmospheric sources on the lake’s surface. These retention rates correspond to only a few percent of the annual P-load from agricultural sources, but we argue that the quantitative role of zebra mussels in nutrient budgets is much larger if these budgets are adjusted for the bias introduced by coarse estimates of N and P pools that include a large share of refractory P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlgren I, Frisk T, Kamp-Nielsen L (1988) Empirical and theoretical models of phosphorus loading, retention and concentration vs lake trophic state. Hydrobiologia 170:285–303

    Article  CAS  Google Scholar 

  • Arwidsson I (1926) Vandraremusslan (Dreissensia polymorpha Pallas) inkommen i Sverige. Fauna och Flora 21:209–217 [in Swedish]

    Google Scholar 

  • Bastviken DTE, Caraco NF, Cole JJ (1998) Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition. Freshwater Biol 39:375–386

    Article  Google Scholar 

  • Berny PJ, Veniat A, Mazallon M (2003) Bioaccumulation of lead, cadmium, and lindane in zebra mussels (Dreissena polymorpha) and associated risk for bioconcentration in Tufted Duck (Aythia fuligula). Bull Environ Contam Toxicol 71:90–97. doi:10.1007/s00128-003-0135-9

    Article  CAS  Google Scholar 

  • Bruner KA, Fisher SW, Landrum PF (1994) The role of the zebra mussel, Dreissena polymorpha, in contaminant cycling: I. The effect of body size and lipid content on the bioconcentration of PCBs and PAHs. J Great Lakes Res 20:725–734

    Article  CAS  Google Scholar 

  • Caraco NF, Cole JJ, Strayer DL (2006) Top down control from the bottom: regulation of eutrophication in a large river by benthic grazing. Limnol Oceanogr 51:664–670

    Article  Google Scholar 

  • Chase ME, Baily RC (1999) The ecology of the zebra mussel (Dreissena polymorpha) in the lower great Lakes of North America: I. Population dynamics and growth. J Great Lakes Res 25:107–121. doi:10.1016/S0380-1330(99)70720-3

    Article  Google Scholar 

  • Connely N, O’Neill CR Jr, Knuth BA, Brown TL (2007) Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities. Environ Manage 40:105–112. doi:10.1007/s00267-006-0296-5

    Article  Google Scholar 

  • Dzialowski AR, Jessie W (2009) Zebra mussels negate or mask the increasing effect of nutrient enrichment on algal biomass: A preliminary mesocosm study. J Plankton Res 31:1437–1440

    Article  Google Scholar 

  • Effler SW, Siegfried C (1998) Tributary water quality feedback from the spread of zebra mussels: Oswego, New York. J Great Lakes Res 24:453–463

    Article  CAS  Google Scholar 

  • Elliott P, Aldridge DC, Moggridge GD (2008) Zebra mussel filtration and its potential uses in industrial water treatment. Water Res 42:1664–1674. doi:org/10.1016/j.watres.2007.10.020

    Article  PubMed  CAS  Google Scholar 

  • European Commission (2006) Setting maximum levels for certain contaminants in food stuffs. Commission regulation (EC) no 181/2006

  • Gergs R, Rinke K, Rothaupt K-O (2009) Zebra mussels mediate benthic–pelagic coupling by biodeposition and changing detrital stoichiometry. Freshwater Biol 1379–1391. doi:10.1111/j.1365-2427.2009.02188.x

  • Goedkoop W, Pettersson K (2000) Seasonal changes in sediment phosphorus forms in relation to sedimentation and benthic bacterial biomass in Lake Erken. Hydrobiologia 431:41–50. doi:10.1023/A:1004050204587

    Article  CAS  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis, 2nd edn. Verlag Chemie, Weinheim

    Google Scholar 

  • Gren I-M, Lindahl O, Lindqvist M (2009) Values of mussel farming for combating eutrophication: an application to the Baltic Sea. Ecol Engg 35:935–945. doi:10.1016/j.ecoleng.2008.12.033

    Article  Google Scholar 

  • Håkanson L (1977) An empirical model for physical parameters of recent sedimentary deposits of Lake Ekoln and Lake Vänern. Vatten 3:266–289

    Google Scholar 

  • Hallstan S, Grandin U, Goedkoop W (2010) Current and modeled potential distribution of the zebra mussel (Dreissena polymorpha) in Sweden. Biol Invasions 12:285–296. doi:10.1007/s10530-009-9449-9

    Article  Google Scholar 

  • Hieltjes AHM, Lijklema L (1980) Fractionation of inorganic phosphates in calcareous sediments. J Environ Qual 9:405–407

    Article  CAS  Google Scholar 

  • Josefsson M, Andersson B (2001) The environmental consequences of alien species in the Swedish lakes Mälaren, Hjälmaren, Vänern and Vättern. Ambio 30:514–521

    PubMed  CAS  Google Scholar 

  • Karatayev AY, Burlakova LE, Padilla DK (1997) The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in eastern Europe. J Shell Fish Res 16:187–203

    Google Scholar 

  • Khalanski M (1997) Industrial and ecological consequences of the introduction of new species in continental aquatic ecosystems: The Zebra mussel and other invasive species. Bulletin Francais De La Peche Et De La Pisciculture 344–345:385–404

    Article  Google Scholar 

  • Królak E, Zdanowski B (2007) Phosphorus and calcium in the mussels Sinanodonta woodiana (Lea) and Dreissena polymorpha (Pall.) in the Konin lakes. Arch Polish Fish 15:287–294 [in Polish]

    Google Scholar 

  • Larsson A (2005) Fyrisån 2004, Rapport om vattenkvalitet och närsaltstransporter (In Swedish). Fyrisåns vattenvårdsförbund, Uppsala kommun

  • Lindahl O, Hart R, Hernroth B, Kollberg S, Loo L-O, Olrog L, Rehnstam-Holm A-S, Svensson J, Svensson S, Syversen U (2005) Improving marine water quality by mussel farming—a profitable solution for Swedish society. Ambio 34:131–138

    PubMed  Google Scholar 

  • MacIsaac HJ (1996) Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. Am Zool 36:287–299

    Google Scholar 

  • Mackie GL, Wright CA (1994) Ability of the zebra mussel, Dreissena polymorpha, to biodeposit and remove phosphorus and BOD from diluted activated sewage sludge. Water Res 28:1123–1130. doi:10.1016/0043-1354(94)90199-6

    Article  CAS  Google Scholar 

  • Mayer CM, Rudstam LG, Mills EL, Cardiff SG, Bloom CA (2001) Zebra mussels (Dreissena polymorpha), habitat alteration, and yellow perch (Perca flavescens) foraging: system-wide effects and behavioural mechanisms. Can J Fish Aquat Sci 58:2459–2467. doi:10.1139/cjfas-58-12-2459

    Article  Google Scholar 

  • Mellina E, Rasmussen JB, Mills EL (1995) Impact of mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Can J Fish Aquat Sci 52:2553–2573

    Article  CAS  Google Scholar 

  • Mills EL, Casselman JM, Dermott R, Fitzsimons JD, Gal G, Holeck KT, Hoyle JA, Johannsson OE, Lantry BF, Makarewicz JC, Millard ES, Munawar IF, Munawar M, O’Gorman R, Owens RW, Rudstam LG, Schaner T, Stewart TJ (2003) Lake Ontario: food web dynamics in a changing ecosystem, (1970–2000). Can J Fish Aquat Sci 60:471–490. doi:10.1139/F03-033

    Article  Google Scholar 

  • Naddafi R, Pettersson K, Eklöv P (2007) The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshwater Biol 52:823–842. doi:10.1111/j.1365-2427.2007.01732.x

    Article  Google Scholar 

  • Naddafi R, Pettersson K, Eklöv P (2008) Effects of the zebra mussel, an exotic freshwater species, on seston stoichiometry. Limnol Oceanogr 53:1973–1987

    Article  CAS  Google Scholar 

  • Nalepa TF, Hartson DJ, Fanslow DL, Lang GA, Lozano SJ (1998) Declines in benthic macroinvertebrate populations in southern Lake Michigan, 1980–1993. Can J Fish Aquat Sci 55:2402–2413. doi:10.1139/cjfas-58-3-518

    Article  Google Scholar 

  • Orlova MI (2002) Dreissena (D.) polymorpha: evolutionary origin and biological peculiarities as prerequisites of invasion success. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, pp 127–134

    Google Scholar 

  • Orlova M, Golubkov S, Kalinina L, Ignatieva N (2004) Dreissena polymorpha (Bivalvia: Dreissenidae) in the neva estuary (eastern Gulf of Finland, Baltic Sea): is it a biofilter or source for pollution? Mar Pollut Bull 49:196–205

    Article  PubMed  CAS  Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  • Reeders HH, Bij de Vaate A (1990) Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200/201:437–450. doi:10.1007/BF0253036

    Article  Google Scholar 

  • Riemann B, Simonsen P, Stensgaard L (1989) The carbon and chlorophyll content of phytoplankton from various nutrient regimes. J Plankton Res 11:1037–1045

    Article  Google Scholar 

  • Simon KS, Townsend CR (2003) Impacts of freshwater invaders at different levels of ecological organisation, with emphasis on salmonids and ecosystem consequences. Freshwater Biol 48:982–994. doi:10.1046/j.1365-2427.2003.01069.x

    Article  Google Scholar 

  • Sprung M (1993) The other life: an account of present knowledge of the larval phase of Dreissena polymorpha. In: Nalepa TF, Schloesser DW (eds) Zebra mussels: biology, impacts, and control. Lewis Publishers, Boca Raton

    Google Scholar 

  • Strayer DL (1991) Projected distribution of the zebra mussel, Dreissena polymorpha, in North America. Can J Fish Aquat Sci 48:1389–1395

    Article  Google Scholar 

  • Vanderploeg HA, Liebig JR, Carmichael WW, Agy MA, Johengen TH, Fahnenstiel GL, Nalepa TF (2001) Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay and Lake Erie. Can J Fish Aquat Sci 58:1208–1221. doi:10.1139/cjfas-58-6-1208

    Article  CAS  Google Scholar 

  • Walz N (1978) The energy balance of the freshwater mussel Dreissena polymorpha Pallas in laboratory experiments and in Lake Constance. I. Pattern of activity, feeding and assimilation efficiency. Archiv für Hydrobiologie/Suppl 55:83–105

    Google Scholar 

  • Wilander A, Persson G (2001) Recovery from eutrophication: experiences of reduced phosphorus input to the four largest lakes of Sweden. Ambio 30:475–485

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Kalle Haikonen and Anna Lundqvist for submerged sampling, Markus Wallin for field assistance, and David Englund and Mirjam Goedkoop for assistance in measuring mussel lengths. This study was funded by the Swedish Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Goedkoop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goedkoop, W., Naddafi, R. & Grandin, U. Retention of N and P by zebra mussels (Dreissena polymorpha Pallas) and its quantitative role in the nutrient budget of eutrophic Lake Ekoln, Sweden. Biol Invasions 13, 1077–1086 (2011). https://doi.org/10.1007/s10530-011-9950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-011-9950-9

Keywords

Navigation