Skip to main content
Log in

Relationship Between mRNA Stability and Length: An Old Question with a New Twist

  • OriginalArticle
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

The half-life of individual mRNA plays a central role in controlling the level of gene expression. However, the determinants of mRNA stability have not yet been well defined. Most previous studies suggest that mRNA length does not affect its stability. Here, we show significant negative correlations between mRNA length and stability in human and Escherichia coli, but not in Saccharomyces cerevisiae or Bacillus subtilis. This finding suggests the possibility that endonucleolytic attacks by RNA endonuclease and/or mechanical damage may strongly influence mRNA stability in both prokaryotes and eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Ghao, S., and Cohen, S. N. (2002). Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. U. S. A. 99:9697–9702.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, J. A., Lin, P. H., Cohen, S. N., and Lin-Chao, S. (2004). Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. Proc. Natl. Acad. Sci. U. S. A. 101:2758–2763.

    Article  PubMed  CAS  Google Scholar 

  • Brown, T. A. (2002) Genomes, 2nd edn. John Wiley & Sons, New York.

    Google Scholar 

  • Dodson, R. E., and Shapiro, D. J. (2002). Regulation of pathways of mRNA destabilization and stabilization. Prog. Nucleic Acid Res. Mol. Biol. 72:129–164.

    PubMed  CAS  Google Scholar 

  • Doma, M. K., and Parker, R. (2006). Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440:561–564.

    Article  PubMed  CAS  Google Scholar 

  • Hambraeus, G., von Wachenfeldt, C., and Hederstedt, L. (2003). Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs. Mol. Genet. Genomics 269:706– 714.

    Article  PubMed  CAS  Google Scholar 

  • Herrick, D., Parker, R., and Jacobson, A. (1990). Identification and comparison of stable and unstable messenger-RNAs in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2269–2284.

    PubMed  CAS  Google Scholar 

  • Holstege, F. C. P., Jennings, E. G, Wyrick, J. J., Lee, T. I., Hengartner, C. J., Green, M. R., Golub, T. R., Lander, E. S., and Young, R. A. (1998). Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728.

    Article  PubMed  CAS  Google Scholar 

  • Jain, C. (2002). Degradation of mRNA in Escherichia coli. IUBMB Life 54:315–321.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J. H., Kim, S. A., and Hong, K. J. (2006). Induction of TSPI gene expression by heat shock is mediated via an increase in mRNA stability. FEBS Lett 580:510–516.

    Article  PubMed  CAS  Google Scholar 

  • Khodursky, A. B., and Bernstein, J. A. (2003). Life after transcription: Revisiting the fate of messenger RNA. Trends Genet. 19:113–115.

    Article  PubMed  CAS  Google Scholar 

  • Knapinska, A. M., Irizarry-Barreto, P., Adusumalli, S., Androulakis, L., and Brewer, G. (2005). Molecular mechanisms regulating mRNA stability: Physiological and pathological significance. Curr. Genomics 6:471–486.

    Article  CAS  Google Scholar 

  • Mata, J., Marguerat, S., and Bahler, A. (2005). Post-transcriptional control of gene expression: A genome-wide perspective. Trends Biochem. Sci. 30:506–514.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, S., Temme, C., and Wahle, E. (2004). Messenger RNA turnover in eukaryotes: Pathways and enzymes. Crit. Rev. Biochem. Mol. Biol. 39:197–216.

    Article  PubMed  CAS  Google Scholar 

  • Parker, R., and Song, H. W. (2004). The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Patthy, L. (1999). Genome evolution and the evolution of exon-shuffling: A review. Gene 238:103–114.

    Article  PubMed  CAS  Google Scholar 

  • Patthy L. (2003). Modular assembly of genes and the evolution of new functions. Genetica 118:217–231.

    Article  PubMed  CAS  Google Scholar 

  • Raghavan, A., Ogilvie, R. L., Reilly, C., Abelson, M. L., Raghavan, S., Vasdewani, J., Krathwohl, M., and Bohjanen, P. R. (2002). Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res. 30:5529–5538.

    Article  PubMed  CAS  Google Scholar 

  • Santiago, T. C., Purvis, I. J., Bettany, A. J., and Brown, A. J. (1986). The relationship between mRNA stability and length in Saccharomyces cerevisiae. Nucleic Acids Res. 14:8347–8360.

    Article  PubMed  CAS  Google Scholar 

  • Selinger, D. W., Saxena, R. M., Cheung, K. J., Church, G. M., and Rosenow, C. (2003). Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res. 13:216–223.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R. A., Herrick, D., Manrow, R. E., Blinder, D., and Jacobson, A. (1988). Determinants of mRNA stability in Diclyostelium discoideum amoebae: differences in poly(A) tail length, ribosome loading, and mRNA size cannot account for the heterogeneity of mRNA decay rates. Mol. Cell. Biol. 8:1957–1969.

    PubMed  CAS  Google Scholar 

  • Tollervey, D. (2006). RNA lost in translation. Nature 440:425–426.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y. L., Liu, C. L., Storey, J. D., Tibshirani, R. J., Herschlag, D., and Brown, P. O. (2002). Precision and functional specificity in mRNA decay. Proc. Natl. Acad. Sci. U. S. A. 99:5860–5865.

    Article  PubMed  CAS  Google Scholar 

  • Wilusz, C. J., and Wilusz, J. (2004). Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet. 20:491–497.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, A., Chang, T. C., Yamashita, Y., Zhu, W., Zhong, Z., Chen, C. Y., and Shyu, A. B. (2005). Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12:1054–1063.

    Article  PubMed  CAS  Google Scholar 

  • Yang, E., van Nimwegen, E., Zavolan, M., Rajewsky, N., Schroeder, M., Magnasco, M., and Darnell, J. E. (2003). Decay rates of human mRNAs: Correlation with functional characteristics and sequence attributes. Genome Res. 13:1863–1872.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank an anonymous referee for comments, Dr. L. Hederstedt of Lund University for providing the data of B. subtilis mRNA half-lives, Shu-Wei Li for help in parsing mRNA length, and Lei Zhu for discussion. This work was supported by National Natural Science Foundation of China (Grant No. 30270695) and Beijing Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng-Ke Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., Niu, DK. Relationship Between mRNA Stability and Length: An Old Question with a New Twist. Biochem Genet 45, 131–137 (2007). https://doi.org/10.1007/s10528-006-9059-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-006-9059-5

KEY WORDS

Navigation