Skip to main content

Advertisement

Log in

Genes, Evolution and Intelligence

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

I argue that the g factor meets the fundamental criteria of a scientific construct more fully than any other conception of intelligence. I briefly discuss the evidence regarding the relationship of brain size to intelligence. A review of a large body of evidence demonstrates that there is a g factor in a wide range of species and that, in the species studied, it relates to brain size and is heritable. These findings suggest that many species have evolved a general-purpose mechanism (a general biological intelligence) for dealing with the environments in which they evolved. In spite of numerous studies with considerable statistical power, we know of very few genes that influence g and the effects are very small. Nevertheless, g appears to be highly polygenic. Given the complexity of the human brain, it is not surprising that that one of its primary faculties—intelligence—is best explained by the near infinitesimal model of quantitative genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. An interesting case of increase in the size of one part of the brain over other parts is the increase in cerebellum size with bower complexity in bowerbirds (Day et al. 2005). Sexual selection has let to an increase in the skills necessary to build intricate and precisely decorated bowers, but it is only reflected in an increase in cerebellum size. Such birds do have larger whole brains relative to other birds that live in similar habitats but do not build bowers. This appears to be an androgen triggered process.

  2. According to Crow, “All that is required is that there be a substantial supply of rare alleles, many of them perhaps in a mutation–selection balance that was reached before the current selection program started” (p. 1242). James Lee (Personal Communication, 2013) has provided me with the following formulation based on Crow’s argument. “Even if the mean of a trait has been consistently increasing in one direction over time, the additive genetic variance does not necessarily decline because there are loci where the "plus" allele was initially rare but then increased in frequency. The contribution of such loci to the additive genetic variance increases rather than decreases, until the plus allele passes the frequency of 0.50. And unless all possible ways to increase the value of the trait have been exhausted, there will always be new mutations entering the population to replenish the variance lost as a result of plus alleles going from 0.50 eventually to fixation. The equilibrium additive genetic variance depends only on the effective population size, and given a size of 10,000 (good enough for humans) a heritability of 0.60 or so is not at all anomalous.” Brem and Kruglyak (2005) provide empirical evidence for the existence of the necessary alleles for a large and unbiased sample of quantitative traits in yeast that are highly heritable (>69 %). Rockman (2012) discusses the general issue within a larger historical context.

  3. Keith et al. (2008) have demonstrated that it is important to use a latent trait model to explore questions regarding sex differences as methodological differences (composite scores vs. g scores, different methods of dealing with missing data, etc.) strongly influence the findings.

  4. For readers who may not be familiar with Gould’s book I should explain my reason for choosing it as a foil. Gould was without doubt among the most influential scientific intellectuals of the 20th century, and he shaped the thinking of huge numbers of people not trained in science (Shermer 2002) as well as a large number of those trained in science. An example of an important scientist/administrator/textbook author influenced by Gould would be Richard Atkinson. He was Director of the National Science Foundation and President of the University of California System and author of a widely used introductory psychology textbook (Atkinson et al. 2000). When asked about IQ testing he “frequently referred then to Stephen Jay Gould’s book The Mismeasure of Man, published in 1981; it is a remarkable piece of scholarship that documented the widespread misuse of IQ tests (Atkinson 2005, p. 16). During Bouchard’s career he was repeatedly confronted by people who cited Gould in opposition to his work with twins reared apart. Indeed Chapter six of The Mismeasure of Man begins as follows:

    “If I had any desire to lead a life of indolent ease, I would wish to be an identical twin, separated at birth from my brother and raised in a different social class. We could hire ourselves out to a host of social scientists and practically name our fee. For we would be exceedingly rare representatives of the only really adequate natural experiment for separating genetic from environmental effects in humans–genetically identical individuals raised in disparate environments.”

    Bouchard’s study of monozygotic twins reared apart had been running for 2 years when this was published and Gould was well aware of the study. He certainly never asked Bouchard what the twins were paid, it was a pittance (Segal 2012). Bouchard finds the claim of venal motivation on the part of twins insulting to say the least.

References

  • Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis” the brain and the digestive system in man and primate evolution. Curr Anthropol 36:199–221

    Google Scholar 

  • Albert DJ (2011) What’s on the mind of a jellyfish? A review of behavioral observations on Aurelia sp. jellyfish. Neurosci Biobehav Rev 35:474–482

    PubMed  Google Scholar 

  • Allman JM (2000) Evolving brains. Scientific American Library, Distributed by WH Freeman, New York

    Google Scholar 

  • Alonso-Nanclares L, Gonzalez-Soriano J, Rodriguez JR, DeFelipe J (2008) Gender differences in human cortical synaptic density. Proc Natl Acad Sci USA 105(38):14615–14619. doi:10.1073/pnas.0803652105

    PubMed Central  PubMed  Google Scholar 

  • Amiel JJ, Tingley R, Shine R (2011) Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS One 6(4):e18277. doi:10.1371/journal.pone.0018277

    PubMed Central  PubMed  Google Scholar 

  • Anderson ML (2010) Neural reuse: a fundamental organizational principle of the brain. Behav Brain Sci 33:245–266

    PubMed  Google Scholar 

  • Atkinson RC (2005) College admissions and the SAT: a personal perspective. Am Psychol Soc Newslett 18:15

    Google Scholar 

  • Atkinson RL, Atkinson RC, Smith EE, Bem DJ, Nolen-Hoeksema S (2000) Hilgard’s introduction to psychology, vol 13. Harcourt College Publishers, New York

    Google Scholar 

  • Austin EJ, Deary IJ, Whitemen MC, Fowkes FGR, Pedersen NL, Rabbitt P, McInnes L (2002) Relationship between ability and personality: does intelligence contribute positively to personal and social adjustment? Personal Individ Differ 32:1391–1412

    Google Scholar 

  • Avise JC (2010) Colloquium paper: footprints of nonsentient design inside the human genome. Proc Natl Acad Sci USA 107(Suppl 2):8969–8976. doi:10.1073/pnas.0914609107

    PubMed Central  PubMed  Google Scholar 

  • Ayala FJ (2010) Colloquium paper: the difference of being human: morality. Proc Natl Acad Sci USA 107(Suppl 2):9015–9022. doi:10.1073/pnas.0914616107

    PubMed Central  PubMed  Google Scholar 

  • Baare WF, Hulshoff Pol HE, Boomsma DI, Posthuma D, de Geus EJ, Schnack HG, Kahn RS (2001) Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex 11(9):816–824

    PubMed  Google Scholar 

  • Banerjee K, Chabris CF, Johnson VE, Lee JJ, Tsao F, Hauser MD (2009) General intelligence in another primate: individual differences across cognitive task performance in a New World monkey (Saguinus oedipus). PLoS One 4(6):e5883. doi:10.1371/journal.pone.0005883

    PubMed Central  PubMed  Google Scholar 

  • Barbey AK, Colom R, Grafman J (2012) Distributed neural system for emotional intelligence revealed by lesion mapping. Soc Cogn Affect Neurosci. doi:10.1093/scan/nss124

    PubMed  Google Scholar 

  • Barbey AK, Colom R, Grafman J (2013) Architecture of cognitive flexibility revealed by lesion mapping. NeuroImage 82:547–554. doi:10.1016/j.neuroimage.2013.05.087

    PubMed  Google Scholar 

  • Barrickman NL, Bastian ML, Isler K, van Schaik CP (2008) Life history costs and benefits of encephalization: a comparative test using data from long-term studies of primates in the wild. J Hum Evol 54:568–590

    PubMed  Google Scholar 

  • Bartholomew DJ (2004) Measuring intelligence: facts and fallacies. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bartholomew DJ, Allerhand M, Deary IJ (2013) Measuring mental capacity: Thomson’s Bonds model and Spearman’s g-model compared. Intelligence 41:222–233

    Google Scholar 

  • Bartley AJ, Jones DW, Weinberger DR (1997) Genetic variability of human brain size and cortical gyral patterns. Brain 120(Pt 2):257–269

    PubMed  Google Scholar 

  • Barton RA (2012) Embodied cognitive evolution and the cerebellum. Philos Trans R Soc B Biol Sci 367(1599):2097–2107. doi:10.1098/rstb.2012.0112

    Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405(6790):1055–1058. doi:10.1038/35016580

    PubMed  Google Scholar 

  • Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523. doi:http://www.ncbi.nlm.nih.gov/pubmed/17079517

    PubMed  Google Scholar 

  • Bates E, Reilly J, Wulfeck B, Dronkers N, Opie M, Fenson J, Herbst K (2001) Differential effects of unilateral lesions on language production in children and adults. Brain Lang 79(2):223–265. doi:10.1006/brln.2001.2482

    PubMed  Google Scholar 

  • Beall CM (2007) Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA 104(Suppl 1):8655–8660. doi:10.1073/pnas.0701985104

    PubMed Central  PubMed  Google Scholar 

  • Bearzi M, Stanford CB (2010) Beautiful minds: the parallel lives of great apes and dolphins. Harvard University Press, Cambridge

    Google Scholar 

  • Bell AM (2009) Approaching the genomics of risk-taking behavior. In: Sokolowski MB (ed) Advances in genetics, vol 68. Academic Press, Burlington, pp 83–104

    Google Scholar 

  • Bennett AF, Lenski RE (2007) An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci USA 104(Suppl 1):8649–8654. doi:10.1073/pnas.0702117104

    PubMed Central  PubMed  Google Scholar 

  • Bergen SE, Gardner CO, Kendler KS (2007) Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: a meta-analysis. Twin Res Hum Genet 10(3):423–433. doi:10.1375/twin.10.3.423

    PubMed  Google Scholar 

  • Betjemann RS, Johnson EP, Barnard H, Boada E, Filley CM, Filipek PA, Pennington BF (2010) Genetic covariation between brain volumes and IQ, reading performance, and processing speed. Behav Genet 40:135–145

    PubMed Central  PubMed  Google Scholar 

  • Blinkhorn SF (1995) Burt and the early history of factor analysis. In: Mackintosh NJ (ed) Cyril Burt: fraud or framed?. Oxford University Press, Oxford, pp 13–44

    Google Scholar 

  • Bonner JT (2013) Randomness in evolution. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Bonney KR, Wynne CD (2004) Studies of learning and problem solving in two species of Australian marsupials. Neurosci Biobehav Rev 28(6):583–594. doi:10.1016/j.neubiorev.2004.08.005

    PubMed  Google Scholar 

  • Borsboom D (2006) The attack of the psychometricians. Psychometrika 71:425–440

    PubMed Central  PubMed  Google Scholar 

  • Bouchard TJ Jr (1993) The genetic architecture of human intelligence. In: Vernon PA (ed) Biological approaches to the study of human intelligence. Ablex, Norwood, NJ, pp 33–93

    Google Scholar 

  • Bouchard TJ Jr (1994) Genes, environment and personality. Science 264:1700–1701

    PubMed  Google Scholar 

  • Bouchard TJ Jr (1997) Experience producing drive theory: How genes drive experience and shape personality. Acta Paediatrica 86(Suppl 422):60–64

    Google Scholar 

  • Bouchard TJ Jr (2007) Genes and human psychological traits. In: Carruthers P, Laurence S, Stich S (eds) The innate mind: foundations for the future, vol 3. Oxford University Press, Oxford

    Google Scholar 

  • Bouchard TJ Jr (2009a) Genetic influence on human intelligence (Spearman’s g): how much? Ann Hum Biol 36(5):527–544. doi:10.1080/03014460903103939

    PubMed  Google Scholar 

  • Bouchard TJ Jr (2009b) Strong inference: a strategy for advancing psychological science. In: McCartney K, Weinberg R (eds) Experience and development: a festschrift in honor of Sandra Wood Scarr. Taylor and Francis, London, pp 39–59

    Google Scholar 

  • Bouchard TJ Jr (2013) The Wilson effect: the increase in heritability of IQ with age. Twin Res Hum Genet 16:923–930. doi:10.1017/thg.2013.54

    PubMed  Google Scholar 

  • Bouchard TJ Jr, Loehlin JC (2001) Genes, evolution and personality. Behav Genet 31:243–273

    PubMed  Google Scholar 

  • Bouchard TJ Jr, Lykken DT, Tellegen A, McGue M (1996) Genes, drives, environment and experience: EPD theory—revised. In: Benbow CP, Lubinski D (eds) Intellectual talent: psychometrics and social issues. John Hopkins University Press, Baltimore, pp 5–43

    Google Scholar 

  • Bouchard J, Goodyer W, Lefebvre L (2007) Social learning and innovations are positive correlated in pigeons (Columba livia). Anim Cognit 10:259–266

    Google Scholar 

  • Brandon R (2006) The principle of drift: biology’s first law. J Philos 102(319–335):76

    Google Scholar 

  • Brant AM, Munakata Y, Boomsma DI, Defries JC, Haworth CM, Keller MC, Hewitt JK (2013) The nature and nurture of high IQ: an extended sensitive period for intellectual development. Psychol Sci. doi:10.1177/0956797612473119

    PubMed  Google Scholar 

  • Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 57,000 gene expression traits in yeast. Proc Natl Acad Sci USA 102:1572–1577. doi:10.1073/pnas.0408709102

    PubMed Central  PubMed  Google Scholar 

  • Briley DA, Tucker-Drob EM (2013) Explaining the increasing heritability of cognitive ability across development: a meta-analysis of longitudinal twin and adoption studies. Psychol Sci. doi:10.1177/0956797613478618

    PubMed Central  PubMed  Google Scholar 

  • Bshary R, Wickler W, Fricke H (2002) Fish cognition: a primate’s eye view. Anim Cogn 5(1):1–13

    PubMed  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, McMullen MD (2009) The gentic architecture of maize flowering time. Science 325:714–718

    PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. doi:10.1038/nrn2575

    PubMed  Google Scholar 

  • Byrne RW, Bates L, Moss CJ (2009) Elephant cognition in primate perspective. Comp Cogn Behav Rev 4:65–79

    Google Scholar 

  • Carey G (1988) Inferences about genetic correlations. Behav Genet 18(329–338):77

    Google Scholar 

  • Carmelli D, DeCarli C, Swan GE, Jack LM, Reed T, Wolf PA, Miller BL (1998) Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke 29:1177–1181

    PubMed  Google Scholar 

  • Carmody RN, Wrangham RW (2009) The energetic significance of cooking. J Hum Evol 57(4):379–391. doi:10.1016/j.jhevol.2009.02.011

    PubMed  Google Scholar 

  • Carroll JB (1996) A three-stratum theory of intelligence: Spearman’s contribution. In: Denis I, Tapsfield P (eds) Human abilities: their nature and measurement. Erlbaum, Mahawa, NJ, pp 1–18

    Google Scholar 

  • Carroll JB (2003a) The higher-stratum structure of cognitive abilities: current evidence supports g and about ten broad factors. In: Nyborg H (ed) The science of general intelligence: tribute to Arthur R. Jensen. Elsevier, Oxford, pp 5–22

    Google Scholar 

  • Carroll SB (2003b) Genetics and the making of Homo sapiens. Nature 422(6934):849–857. doi:10.1038/nature01495

    PubMed  Google Scholar 

  • Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Rappoport JL (2002) Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyper activity disorder. J Am Med Assoc 288:1740–1748

    Google Scholar 

  • Chabris CF (2007) Cognitive neurobiological mechanism of the law of general intelligence. In: Roberts MJ (ed) Integrating the mind: domain general versus domain specific processes in higher cognition. Psychology Press, Hove, UK, pp 449–491

    Google Scholar 

  • Charvet CJ, Finlay BL (2012) Embracing covariation in brain evolution: large brains, extended development, and flexible primate social systems. In: Hoffman MA, Falk D (eds) Progress in brain research, vol 195. Elsevier, Amsterdam

    Google Scholar 

  • Chen CY, Michael WB (1993) Higher-order abilities conceptualized with in Guilford’s Structure-Of-Intellect (SOI) model for a sample of United States Coast Guard Academy Cadets: a reanalysis of an Soi data base. Educ Psychol Meas 53(4):941–950. doi:10.1177/0013164493053004007

    Google Scholar 

  • Chervet N, Zottl M, Schurch R, Taborsky M, Heg D (2011) Repeatability and heritability of behavioural types in a social cichlid. Int J Evol Biol 2011:321729. doi:10.4061/2011/321729

    PubMed Central  PubMed  Google Scholar 

  • Cheverud JM, Falk D, Vannier M, Konigsberg L, Helmkamp RC, Hildebolt C (1990) Heritability of brain size and surface features in rhesus macques (Macaca mulatta). J Hered 81:51–57

    PubMed  Google Scholar 

  • Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19(21):R995–R1008. doi:10.1016/j.cub.2009.08.023

    PubMed  Google Scholar 

  • Clark DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ, Aranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular and dedical aspects. Lippincott-Raven, Philadelphia, pp 637–670

    Google Scholar 

  • Cochran G, Harpending H (2009) The 10,000 year explosion: How civilization accelerated human evolution. Basic Books, New York

    Google Scholar 

  • Colom R, Thompson PM (2011) Understanding human intelligence by imaging the brain. In: Chamorro-Premuzic T, Furnham A, Von Stumm S (eds) The Wiley-Blackwell handbook of individual differences. Wiley-Blackwell, London, pp 330–352

    Google Scholar 

  • Connor RC (2007) Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philos Trans R Soc Lond B Biol Sci 362(1480):587–602. doi:10.1098/rstb 2006.1997

    PubMed Central  PubMed  Google Scholar 

  • Cosmides L, Barrett HC, Tooby J (2010) Adaptive specializations, social exchange, and the evolution of human intelligence. Proc Natl Acad Sci USA 107:9007–9014

    PubMed Central  PubMed  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284(5420):1670–1672

    PubMed  Google Scholar 

  • Crow JF (2008) Maintaining evolvability. J Genet 87:349–353

    PubMed  Google Scholar 

  • Crow JF (2010) On epistasis: why it is unimportant in polygenic directional selection. Philos Trans R Soc B Biol Sci 365:1241–1244. doi:10.1098/rstb 2009.0275

    Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, London

    Google Scholar 

  • Daston L, Galison P (2007) Objectivity. Zone, New York

    Google Scholar 

  • David-Gray ZK, Janssen JWH, DeGrip WJ, Nevo E, Foster RG (1998) Light detection in a ‘blind’ mammal. Nature Neurosci 1:655–656

    PubMed  Google Scholar 

  • Dawkins R (1982) The extended phenotype: the long reach of the gene. Oxford University Press, Oxford, p 80

    Google Scholar 

  • Day LB, Westcott DA, Olster DH (2005) Evolution of bower complexity and cerebellum size in bowerbirds. Brain Behav Evol 66:62–72

    PubMed  Google Scholar 

  • De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, Masalehdan A, Boring AM (2001) Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 11(6):552–557

    PubMed  Google Scholar 

  • Deaner R, Barton RA, Van Schaik CP (2003) Primate brains and life histories: renewing the connection. In: Kappeler P, Pereira M (eds) Primate life histories and socioecology. University of Chicago Press, Chicago, IL, pp 233–265

    Google Scholar 

  • Deaner RO, van Schaik CP, Johnson V (2006) Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evolut Psychol 4:149–196

    Google Scholar 

  • Deary IJ, Johnson W, Houlihan LM (2009) Genetic foundations of human intelligence. Hum Genet 126(1):215–232. doi:10.1007/s00439-009-0655-4

    PubMed  Google Scholar 

  • DeYoung C (2011) Intelligence and personality. In: Sternberg RJ, Kaufman SB (eds) The Cambridge handbook of intelligence. Cambridge University Press, New York, pp 711–737

    Google Scholar 

  • Dickens WT, Flynn JR (2001) Heritability estimates versus large environmental effects: the IQ paradox resolved. Psychol Rev 108(2):346–369

    PubMed  Google Scholar 

  • Draghi JA, Parsons TL, Wagner GP, Plotkin JB (2010) Mutational robustness can facilitate adaptation. Nature 463:353–355. doi:10.1038/nature0869481

    PubMed Central  PubMed  Google Scholar 

  • Drake JM (2007) Parental investment and fecundity, but not brain size are associated with establishment sucess in introduced fishes. Funct Ecol 21(5):963–968. doi:10.1111/j.1365-2435.2007.01318.x

    Google Scholar 

  • Duarte-Carvajalino JM, Jahanshad N, Lenglet C, McMahon KL, de Zubicaray GI, Martin NG, Sapiro G (2012) Hierarchical topological metwork analysis of anatomical brain connectiviety and differences related to sex and kinship. NeuroImage 59:3784–3804

    PubMed Central  PubMed  Google Scholar 

  • Dugas-Ford J, Rowell JJ, Ragsdale CW (2012) Cell-type homologies and the origins of the neocortex. Proc Natl Acad Sci USA 109(42):16974–16979. doi:10.1073/pnas.1204773109

    PubMed Central  PubMed  Google Scholar 

  • Edwards AWF (1994) The fundamental theorem of natural selection. Biol Rev Camb Philos Soc 69(4):443–474

    PubMed  Google Scholar 

  • Edwards AWF (2003) Human genetic diversity: Lewontin’s falacy. BioEssays 25:798–801

    PubMed  Google Scholar 

  • Edwards AWF (2004) Foundations of mathematical genetics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Elebedour S, Bouchard TJJ, Hur Y (1997) Similarity in general mental ability in Bedouin full and half siblings. Intelligence 25:71–82

    Google Scholar 

  • Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306(5703):1903–1907. doi:10.1126/science.1098410

    PubMed  Google Scholar 

  • Fancher RE (1987) Henry Goddard and the Kallikak family photographs: “Conscious skulduggery” or “Whig history”? Am Psychol 42(585–590):82

    Google Scholar 

  • Fears SC, Melega WP, Service SK, Lee C, Chen K, Tu Z, Woods RP (2009) Identifying heritable brain phenotypes in an extended pedigree of vervet monkeys. J Neurosci 29(9):2867–2875. doi:10.1523/JNEUROSCI.5153-08.2009

    PubMed Central  PubMed  Google Scholar 

  • Feldman MW, Otto SP, Christiansen FB (2000) Genes, culture, and inequality. In: Arrow K, Bowles S, Durlauf S (eds) Meritocracy and economic inequality. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Ferguson CJ, Heene M (2012) A vast graveyard of undead theories: publication bias and psychological science’s aversion to the null. Perspect Psychol Sci 7:555–561. doi:10.1177/1745691612459059

    Google Scholar 

  • Finlay BL (2007) E Pluribus Unum: too many unique human capacities and too many theories. In: Gangestad S, Simpson JA (eds) The evolution of mind: fundamental questions and controversies. Guilford Press, New York, pp 294–301

    Google Scholar 

  • Firkowska A, Ostrowska A, Sokolowska M, Stein Z, Susser M, Wald I (1978) Cognitive development and social policy: the contribution of parental occupation and education to mental performance in 11-year-olds in Warsaw. Science 200:1357–1362

    PubMed  Google Scholar 

  • Firkowska-Mankiewicz A (2011) Adult careers: does childhood IQ predict later life outcome? J Policy Pract Intellect Disabil 8(1):1–9. doi:10.1111/j.1741-1130.2011.00281.x83

    Google Scholar 

  • Fish JL, Lockwood CA (2003) Dietary constraints on encephalization in primates. Am J Phys Anthropol 120(2):171–181. doi:10.1002/ajpa.10136

    PubMed  Google Scholar 

  • Flint J, Munafo M (2013) Genetics. Herit-ability. Science 340(6139):1416–1417. doi:10.1126/science.1240684

    PubMed  Google Scholar 

  • Floyd RG, Shands EI, Rafael FA, Bergeron R, McGrew KS (2009) The dependability of general-factor loadings: the effects of factor-extraction methods, test battery composition, test battery size, and their interactions. Intelligence 37:453–465. doi:10.1016/j.intell.2009.05.003

    Google Scholar 

  • Fodor JA (1983) The modularity of mind: an essay on faculty psychology. MIT Press, Cambridge, MA

    Google Scholar 

  • Foerder P, Galloway M, Barthel T, Moore DE 3rd, Reiss D (2011) Insightful problem solving in an Asian elephant. PLoS One 6(8):e23251. doi:10.1371/journal.pone.0023251

    PubMed Central  PubMed  Google Scholar 

  • Foley R, Gamble C (2009) The ecology of social transitions in human evolution. Philos Trans R Soc Lond B Biol Sci 364(1533):3267–3279. doi:10.1098/rstb.2009.0136

    PubMed Central  PubMed  Google Scholar 

  • Frangou S, Chitins X, Williams SC (2004) Mapping IQ and gray matter density in healthy young people. NeuroImage 23(3):800–805. doi:10.1016/j.neuroimage.2004.05.027

    PubMed  Google Scholar 

  • Freeman D (2000) 21st Century Boasian Culturism. Anthropology News, May 2000, 4

  • Freeman HD, Brosnan SF, Hopper LM, Lambeth SP, Schapiro SJ, Gosling SD (2013) Developing a comprehensive and comparative questionnaire for measuring personality in chimpanzees using a simultaneous top-down/bottom-up design. Am J Primatol. doi:10.1002/ajp.22168

    PubMed Central  PubMed  Google Scholar 

  • Galton F (1871) Gregariousness in cattle and in men. Macmillan’s Mag 23:353–357

    Google Scholar 

  • Gangestad SW (2010) Evolutionary biology looks at behavior genetics. Personal Individ Differ 49:289–295

    Google Scholar 

  • Gazes RP, Brown EK, Basile BM, Hampton RR (2013) Automated cognitive testing of monkeys in social groups yields results comparable to individual laboratory-based testing. Anim Cognit. doi:10.1007/s10071-012-0585-8

    Google Scholar 

  • Gerhart J, Kirschner M (2007) The theory of facilitated variation. Proc Natl Acad Sci USA 104(Suppl 1):8582–8589. doi:10.1073/pnas.0701035104

    PubMed Central  PubMed  Google Scholar 

  • Geshwind DH, Miller BL, DeCarli C, Carmelli D (2002) Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness. Proc Natl Acad Sci USA 99:3176–3181. doi:http://profiles.ucsf.edu/display/254725

    Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci 2(10):861–863. doi:10.1038/13158

    PubMed  Google Scholar 

  • Glascher J, Rudrauf D, Colom R, Paul LK, Tranel D, Damasio H, Adolphs R (2010) Distributed neural system for general intelligence revealed by lesion mapping. Proc Natl Acad Sci USA 107(10):4705–4709. doi:10.1073/pnas.0910397107

    PubMed Central  PubMed  Google Scholar 

  • Glenn SS, Ellis J (1988) Do the Kallikaks look “Menacing” or “Retarded”? Am Psychol 43:742–743

    Google Scholar 

  • Gogtay N, Thompson PM (2010) Mapping gray matter development: implications for typical development and vulnerability to psychopathology. Brain Cogn 72(1):6–15. doi:10.1016/j.bandc.2009.08.009

    PubMed Central  PubMed  Google Scholar 

  • Goh S, Bansal R, Xu D, Hao X, Liu J, Peterson BS (2011) Neuroanatomical correlates of intellectual ability across the life span. Dev Cogn Neurosci 1(3):305–312. doi:10.1016/j.dcn.2011.03.001

    PubMed  Google Scholar 

  • Gould SJ (1981) The mismeasure of man. W. W. Norton, New York

    Google Scholar 

  • Gould SJ (1996) The mismeasure of man, 2nd edn. Norton, New York

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Maco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–589

    PubMed  Google Scholar 

  • Gower JC (1972) Measures of taxonomic distance and their analysis. In: Weiner JS, Hiuizinga J (eds) The assessment of population affinities in man. Clarendon, Oxford, pp 1–24

    Google Scholar 

  • Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s finches. Science 313(5784):224–226. doi:10.1126/science.1128374

    PubMed  Google Scholar 

  • Guilford JP (1985) The structure-of-intellect model. In: Wolman BB (ed) Handbook of intelligence: theories, measurements, and applications. Wiley, New York, pp 225–266

    Google Scholar 

  • Guilford JP (1988) Some changes in the structure-of-intellect model. Educ Psychol Meas 48(1):1–4. doi:10.1177/001316448804800102

    Google Scholar 

  • Guttman L, Levey S (1991) Two structural laws for intelligence tests. Intelligence 15:79–103

    Google Scholar 

  • Haier RJ (2009) What does a smart brain look like? Sci Am Mind 20:26–33

    Google Scholar 

  • Haile-Selassie Y, Suwa G, White TD (2004) Late Miocene teeth from Middle Awash, Ethiopia, and early hominid dental evolution. Science 303(5663):1503–1505. doi:10.1126/science.1092978

    PubMed  Google Scholar 

  • Hampshire A, Thompson R, Duncan J, Owen AM (2011) Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning. Cereb Cortex 21(1):1–10. doi:10.1093/cercor/bhq085

    PubMed Central  PubMed  Google Scholar 

  • Hancock AM, Witonsky DB, Ehler E, Alkorta-Aranburu G, Beall C, Gebremedhin A, Di Rienzo A (2010) Colloquium paper: human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency. Proc Natl Acad Sci USA 107(Suppl 2):8924–8930. doi:10.1073/pnas.0914625107

    PubMed Central  PubMed  Google Scholar 

  • Hare B, Plyusnina I, Ignacio N, Schepina O, Stepika A, Wrangham R, Trut LN (2005) Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication. Curr Biol 15:226–230. doi:10.1016/j.cub.2005.01.040

    PubMed  Google Scholar 

  • Hart BL, Hart LA, Pinter-Wollman N (2008) Large brains and cognition: where do elephants fit in? Neurosci Biobehav Rev 32:86–98. doi:10.1016/j.neubiorev.2007.05.01287

    PubMed  Google Scholar 

  • Hawks J, Wang ET, Cochran GM, Harpending HC, Moyzis RK (2007) Recent acceleration of human adaptive evolution. Proc Natl Acad Sci USA 104(52):20753–20758. doi:10.1073/pnas.0707650104

    PubMed Central  PubMed  Google Scholar 

  • Hayes KJ (1962) Genes, drives, and intellect. Psychol Rep 10:299–342

    Google Scholar 

  • Herbron KA, Macleod R, Miles WTS, Schofield ANB, Alexander L, Arnold KE (2010) Personality in captivity relflects personality in the wild. Anim Behav 79:835–843. doi:10.1016/j.anbehav.2009.12.026

    Google Scholar 

  • Herrmann E, Call J (2012) Are there geniuses among the apes? Philos Trans R Soc B 397:2753–2761

    Google Scholar 

  • Herrmann E, Hernández-Lloreda MV, Call J, Hare B, Tomasello M (2010) The structure of individual differences in the cognitive abilites of children and chimpanzees. Psychol Sci 21:102–110. doi:10.1177/0956797609356511

    PubMed  Google Scholar 

  • Hill WG, Goddard ME, Visscher PM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4:1–10. doi:10.1371/journal.pgen.1000008

    Google Scholar 

  • Hill K, Barton M, Hurtado M (2010) The emergence of human uniqueness: characters underlying behavioral modernity. Evolut Anthropol 18:187–200. doi:10.1002/evan.20224

    Google Scholar 

  • Holliday MA (1986) Body composition and energy needs during growth. In: Falkner F, Tanner J (eds) Human growth: a comprehensive treatise, 2nd edn. Plenum, New York, pp 101–117

    Google Scholar 

  • Holloway RL (2002) Head to head with Boas: did he err on the plasticity of head form? Proc Natl Acad Sci USA 99:14622–14623. doi:10.1073/pnas.242622399

    PubMed Central  PubMed  Google Scholar 

  • Holloway RL (2008) The human brain evolving: a personal retrospective. Annu Rev Anthropol 37(1):1–19. doi:10.1146/annurev.anthro.37.081407.085211

    Google Scholar 

  • Horn JL (1989) Models of intelligence. In: Linn RL (ed) Intelligence: measurement, theory, and public policy. University of Illinois Press, Urbana, IL, pp 29–73

    Google Scholar 

  • Horn JL, Knapp JR (1973) On the subjective character of the emperical base for Guilford’s structure-of-intellect model. Psychol Bull 80:33–43

    Google Scholar 

  • Hrdy SB (1999) Mother nature: maternal instincts and how they shape the human species. Pantheon Books, New York

    Google Scholar 

  • Hulshoff Pol HE, Schnack HG, Posthuma D, Mandl RW, Baaré WF, van Oel C, Kahn RS (2006) Genetic contributions to human brain morphology and intelligence. J Neurosci 26(40):10235–10242. doi:10.1523/JNEUROSCI.1312-06.2006

    PubMed  Google Scholar 

  • Isler K, van Schaik CP (2006a) Cost of encephalization: the energy trade-off hypothesis tested on birds. J Hum Evol 51:228–243

    PubMed  Google Scholar 

  • Isler K, van Schaik CP (2006b) Metabolic costs of brain size evolution. Biol Lett 2(4):557–560. doi:10.1098/rsbl.2006.0538

    PubMed Central  PubMed  Google Scholar 

  • Isler K, van Schaik CP (2009) Why are there so few smart mammals (but so many smart birds)? Biol Lett 5(125–129):89

    Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196(4295):1161–1166

    PubMed  Google Scholar 

  • Jacobs GH, Nathans J (2009) The evolution of primate color vision. Sci Am 300(4):56–63

    PubMed  Google Scholar 

  • Jacobs GH, Rowe MP (2004) Evolution of vertebrate colour vision. Clin Exp Optom 87(4–5):206–216. doi:10.1111/j.1444-0938.2004.tb05050.x

    PubMed  Google Scholar 

  • Jaušovec N, Jaušovec K (2005) Sex differences in brain activity related to general and emotional intelligence. Brain Cogn 59(3):277–286. doi:10.1016/j.bandc.2005.08.001

    PubMed  Google Scholar 

  • Jenkins JJ, Patterson DG (1961) Preface. In: Jenkins JJ, Patterson DG (eds) Studies in individual differences. Appleton-Century-Crofts, New York

    Google Scholar 

  • Jensen AR (1998) The g factor: the science of mental ability. Praeger, Westport, CN

    Google Scholar 

  • Jensen AR (2000) The g factor is about variance in human abilities, not a cognitive theory of mental structure. Psycoloquy 11:106

    Google Scholar 

  • Jensen AR (2006) Clocking the mind: mental chronometry and individual differences. Elsevier, New York

    Google Scholar 

  • Johnson W (2010) Extending and testing Tom Bouchard’s experience producing drive theory. Personal Individ Differ 49:296–301. doi:10.1016/j.paid.2009.11.022

    Google Scholar 

  • Johnson W, Bouchard TJ Jr (2005) The structure of human intelligence: it’s verbal, perceptual, and image rotation (VPR), not fluid crystallized. Intelligence 33(393–416):90

    Google Scholar 

  • Johnson W, Bouchard TJ Jr (2007a) Sex differences in mental abilities: g masks the dimension on which they lie. Intelligence 35:23–39

    Google Scholar 

  • Johnson W, Bouchard TJ Jr (2007b) Sex differences in mental abilitiy: a proposed means to link them to brain structure and function. Intelligence 35:197–209

    Google Scholar 

  • Johnson W, Bouchard TJ Jr, McGue M, Segal NL, Tellegen A, Keyes M, Gottesman II (2007) Genetic and environmental influences on the verbal-perceptual-image rotation (VPR) model of the structure of mental abilities in the Minnesota Study of Twins Reared Apart. Intelligence 35:542–562

    Google Scholar 

  • Johnson W, Nijenhuis JT, Bouchard TJ Jr (2008) Still just 1 g: consistent results from five test batteries. Intelligence 36:81–95

    Google Scholar 

  • Jolles DD, van Buchem MA, Crone EA, Rombouts SARB (2011) A comprehensive study of whole-brain functional connectivity in children and young adults. Cereb Cortex 21(2):385–391. doi:10.1093/cercor/bhq104

    PubMed  Google Scholar 

  • Jones EG, Rakic P (2010) Radial columns in cortical architecture: it is the composition that counts. Cereb Cortex 20:2261–2264. doi:10.1093/cercor/bhq127

    PubMed Central  PubMed  Google Scholar 

  • Jones P, Chase K, Martin A, Davern P, Ostrander EA, Lark KG (2008) Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 179(2):1033–1044. doi:10.1534/genetics.108.087866

    PubMed Central  PubMed  Google Scholar 

  • Jung RE, Haier RJ (2007) The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30(2):135–187. doi:10.1017/S0140525X0700118591

    PubMed  Google Scholar 

  • Kaminski J, Call J, Fisher J (2004) Word learning in a domestic dog: evidence for “fast mapping”. Science 304:1682–1683

    PubMed  Google Scholar 

  • Karama S, Colom R, Johnson W, Deary IJ, Haier R, Waber DP, Evans AC (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children age 6 to 18. NeuroImage 55:1443–1453. doi:10.1016/j.neuroimage.2011.01.016

    PubMed Central  PubMed  Google Scholar 

  • Keith TZ, Reynolds MR, Patel PG, Ridley KP (2008) Sex diferences in latent cognitive abilities age 6 to 59: evidence from the Woodcock-Johnson III tests of cognitive abilities. Intelligence 36:502–525. doi:10.1016/j.intell.2007.11.001

    Google Scholar 

  • Kim Y, Przytycka TM (2013) Bridging the gap between genotype and phenotype via network approaches. Front Genet 3:227. doi:10.3389/fgene.2012.00227

    PubMed Central  PubMed  Google Scholar 

  • Kimble DP (1997) Didelphid behavior. Neurosci Biobehav Rev 21(3):361–369

    PubMed  Google Scholar 

  • Kliebenstein DJ (2010) Systems biology uncovers the fondation of natural genetic diversity. Plant Physiol 152:480–486. doi:10.1104/pp.109.149328

    PubMed Central  PubMed  Google Scholar 

  • Korb KB (1994) Stephen Jay Gould on intelligence. Cognition 52(2):111–123

    PubMed  Google Scholar 

  • Kornum BR, Knudsen GM (2011) Cognitive testing of pigs (Sus scrofa) in translational biobehavioral research. Neurosci Biobehav Rev 35(3):437–451. doi:10.1016/j.neubiorev.2010.05.00492

    PubMed  Google Scholar 

  • Krubitzer L, Kaas J (2005) The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr Opin Neurobiol 15:444–453. doi:10.1016/j.conb.2005.07.003

    PubMed  Google Scholar 

  • Krueger RF, Markon KE, Bouchard TJ Jr (2003) The extended genotype: the heritability of personality accounts for the heritability of recalled family environments in twins reared apart. J Pers 71(5):809–833

    PubMed  Google Scholar 

  • Kruska DCT (2005) On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and ferallization. Brain Behav Evol 65:73–108. doi:10.1159/000082979

    PubMed  Google Scholar 

  • Kurvers RHJM, Ejkelenkamp B, van Oers K, van Lith B, van Wieren SE, Ydenberg RC, Prins HHT (2009) Personality differences explain leadership in barnacle geese. Anim Behav 78:447–453. doi:10.1016/j.anbehav.2009.06.002

    Google Scholar 

  • Lee J (2007) A g beyond Homo sapiens? Some hints and suggestions. Intelligence 35:253–265. doi:10.1016/j.intell.2006.08.003

    Google Scholar 

  • Lee JJ (2009) The role of a general cognitive factor in the evolution of human intelligence. In: Platek SM, Shackelford TK (eds) Foundations in evolutionary cognitive science. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee JJ (2010). Review of intelligence and how to get it: why schools and cultures count, R. E. Nisbett, Norton, New York, NY (2009). ISBN:97803065053. Personal Individ Differ, 48, 247–255. doi:10.1016/j.paid.2009.09.015

  • Lee JJ (2012) Correlation and causation in the study of personality. Eur J Pers 26:372–390. doi:10.1002/per.1863

    Google Scholar 

  • Lee S-H, Wolpoff MH (2003) The pattern of evolution in Pleistocene human brain size. Paleobiology 29:186–196

    Google Scholar 

  • Lefebvre L (2011) Taxonomic counts of cognition in the wild. Biology Lett: Anim Behav 7:631–633. doi:10.1098/rsbl.2010.0556

    Google Scholar 

  • Lefebvre L (2013) Brains, innovations, tools and cultural transmission in birds, non-human primates, and fossil hominins. Front Hum Nerosci 7:245. doi:10.3389/fnhum.2013.00245

    Google Scholar 

  • Lefebvre L, Reader SM, Sol D (2004) Brains, innovations and evolution in birds and primates. Brain Behav Evol 63(4):233–246. doi:10.1159/000076784

    PubMed  Google Scholar 

  • Lessov-Schlaggar CN, Hardin J, DeCarli C, Krasnow RE, Reed T, Wolf PA, Carmelli D (2012) Longitudinal genetic analysis of brain volumes in normal elderly male twins. Neurobiol Aging 33(4):636–644. doi:10.1016/j.neurobiolaging.2010.06.002

    PubMed Central  PubMed  Google Scholar 

  • Lewis JE, Degusta D, Meyer MR, Monge JM, Mann AE, Holloway RL (2011) The mismeasure of science: Stephen Jay Gould versus Samuel George Morton on skulls and bias. PLoS Biol 9(6):e1001071. doi:10.1371/journal.pbio.1001071

    PubMed Central  PubMed  Google Scholar 

  • Li Y, Liu Y, Li J, Qin W, Li K, Yu C, Jiang T (2009) Brain anatomical network and intelligence. PLoS Comput Biol 5(5):e1000395. doi:10.1371/journal.pcbi.100039594

    PubMed Central  PubMed  Google Scholar 

  • Lindenfors P, Nunn CL, Barton RA (2007) Primate brain architecture and selection in relation to sex. BMC Biol 5:20. doi:10.1186/1741-7007-5-20

    PubMed Central  PubMed  Google Scholar 

  • Loehlin JC (2004) Latent variable models: an introduction to factor, path, and structural analysis, 4th edn. Erlbaum, Mahwah, NJ

    Google Scholar 

  • Lubinski D (2010) Spatial ability and STEM: a sleeping giant for talent identification and development. Personal Individ Differ 49:344–351. doi:10.1016/j.paid.2010.03.022

    Google Scholar 

  • Luciana M (2010) Adolescent brain development: current themes and future directions introduction to the special issue. Brain Cogn 72(1):1–5. doi:10.1016/j.bandc.2009.11.002

    PubMed  Google Scholar 

  • Luders E, Narr KL, Bilder RM, Szeszko PR, Gurbani MN, Hamilton L, Gaser C (2007) Mapping the relationship between cortical convolution and intelligence: effects of gender. Cereb Cortex 18:2019–2026. doi:10.1093/cercor/bhm227

    PubMed Central  PubMed  Google Scholar 

  • Lykken DT (1991) What’s wrong with psychology anyway? In: Cicchetti D, Grove WM (eds) Thinking clearly about psychology Volume 1: matters of public interest. University of Minnesota Press, Minneapolis, MN

    Google Scholar 

  • Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104:8597–8604. doi:10.1073/pnas.0702207104

    PubMed Central  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Macphail EM, Bolhuis JJ (2001) The evolution of intelligence: adpative specialization versus general process. Biol Rev 76:341–364

    PubMed  Google Scholar 

  • Mahaney MC, Williams-Blangero S, Blangero J, Leland MM (1993) Quantitative genetics of relative organ weight variation in captive baboons. Hum Biol 65(6):991–1003

    PubMed  Google Scholar 

  • Major JT, Johnson W, Bouchard TJ Jr (2011) The dependability of the general factor of intelligence: why small, single-factor models do not adequately represent g. Intelligence 39:418–433

    Google Scholar 

  • Major JT, Johnson W, Deary IJ (2012) Comparing models of intelligence in project TALENT: the VPR model fits better than the CHC and extended Gf–Gc models. Intelligence 40:543–559. doi:10.1016/j.intell.2012.07.006

    Google Scholar 

  • Marcus G (2008) Kluge: the haphazard construction of the human mind. Houghton Mifflin, Boston

    Google Scholar 

  • Marigorta UM, Navarro A (2013) High trans-ethnic replicability of GWAS results implies common causal variants. PLoS Genet. doi:10.1371/journal.pgen.1003566

    PubMed Central  PubMed  Google Scholar 

  • Marino L (2002) Convergence of complex cognitive abilities in cetaceans and primates. Brain Behav Evol 59(1–2):21–32. doi:10.1159/000063731

    PubMed  Google Scholar 

  • Marino L (2005) Big brains do matter in new environments. Proc Natl Acad Sci USA 102:5306–5307. doi:10.1073/pnas.0501695102

    PubMed Central  PubMed  Google Scholar 

  • Marino L, Connor RC, Fordyce RE, Herman LM, Hof PR, Lefebvre L, Whitehead H (2007) Cetaceans have complex brains for complex cognition. PLoS Biol 5(5):e139. doi:10.1371/journal.pbio.0050139

    PubMed Central  PubMed  Google Scholar 

  • Martin NG, Eaves LJ, Heath AC, Jardine R, Feingold LM, Eysenck HJ (1986) Transmission of social attitudes. Proc Natl Acad Sci USA 83(12):4364–4368

    PubMed Central  PubMed  Google Scholar 

  • Martin-Ordas G, Berntsen D, Call J (2013) Memory for distant past events in Chimpanzees and Orangatangs. Curr Biol. doi:10.1016/j.cub.2013.06.017

    PubMed  Google Scholar 

  • Mather JA (2008) Cephalopod consciousness: behavioural evidence. Conscious Cogn 17(1):37–48. doi:10.1016/j.concog.2006.11.006

    PubMed  Google Scholar 

  • Matzel LD, Wass C, Kolata S (2011) Individual differences in animal intelligence: learning, reasoning, selective attention and inter-species conservation of a cognitve trait. Int J Comp Psychol 24:36–59

    Google Scholar 

  • Matzke D, Dolan CV, Molenar D (2010) The issue of power in the identification of “g” with lower-order factors. Intelligence 38:336–344. doi:10.1016/j.intell.2010.02.001

    Google Scholar 

  • McClearn GE, Johansson B, Berg S, Pedersen NL, Ahern F, Petrill SA, Plomin R (1997) Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276(5318):1560–1563

    PubMed  Google Scholar 

  • McDaniel MA (2005) Big-brained people are smarter: a meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 33:337–346. doi:10.1016/j.intell.2004.11.005

    Google Scholar 

  • McEvoy BP, Visscher PM (2009) Genetics of human height. Econ Hum Biol 7(3):294–306. doi:10.1016/j.ehb.2009.09.005

    PubMed  Google Scholar 

  • McGrew KS (2009) CHC theory and the human cognitive abilities project: standing on the shoulders of the giants of psychometric intlligence research. Intelligence 37:1–10. doi:10.1016/j.intell.2008.08.004

    Google Scholar 

  • McShea DW, Brandon RN (2010) Biology’s first law: the tendency for diversity and complexity to increase in evolutionary systems. University of Chicago Press, Chicago

    Google Scholar 

  • Michael JS (1988) A new look at Morton’s craniological research. Curr Anthropol 29:349–354

    Google Scholar 

  • Miller GF, Penke L (2006) The evolution of human intelligence and the coefficient of additive genetic variance in human brain size. Intelligence 35:97–114. doi:10.1016/j.intell.2006.08.008

    Google Scholar 

  • Millien V (2006) Morphological evolution is accelerated among island mammals. PLoS Biol 4(10):e221. doi:10.1371/journal.pbio.0040321

    Google Scholar 

  • Mischel W (2005) Alternative futures for our science. Assoc Psychol Sci Obs 18:2–3

    Google Scholar 

  • Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132:492–500. doi:10.1007/s00442-002-0952-2

    Google Scholar 

  • Mueller-Paul J, Wilkinson A, Hall G, Huber L (2012) Radial-arm-maze behavior of the red-footed tortoise (Geochelone carbonaria). J Comp Psychol 126:305–317

    PubMed  Google Scholar 

  • Nippak PMD, Milgram NW (2005) An investigation of the relationship between response latency across several cognitive tasks in the beagle dog. Prog Neuro-Psychopharmachol Biol Psychiat 29(3):371–377. doi:10.1016/j.pnpbp.2004.12.003

    Google Scholar 

  • Niven JE (2005) Brain evolution: getting better all the time? Curr Biol 15(16):R264. doi:10.1016/j.cub.2005.08.007

    Google Scholar 

  • Niven JE (2008) Evolution: convergent eye losses in fishy circumstances. Curr Biol 18(1):R27–R29. doi:10.1016/j.cub.2007.11.020

    PubMed  Google Scholar 

  • Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211(Pt 11):1792–1804. doi:10.1242/jeb.017574

    PubMed  Google Scholar 

  • Nussey DH, Postma E, Gienapp P, Visser ME (2005) Selection on heritable phenotypic plasticity in a wild bird population. Science 310(5746):304–306. doi:10.1126/science.1117004

    PubMed  Google Scholar 

  • Nyborg H (ed) (2003) The scientific study of general intelligence: tribute to Arthur Jensen. Pergamon, New York

    Google Scholar 

  • Overington SE, Dubois F, Lefebvre L (2008) Food unpredictability drives both generalism and social foraging: a game theoretical model. Behav Ecol 19:836–841. doi:10.1093/beheco/arn037

    Google Scholar 

  • Overington SE, Morand-Ferron J, Boogert NJ, Lefebvre L (2009) Technical innovations drive the relationship between innovativenss and residual brain size in birds. Anim Behav 78:1001–1010. doi:10.1016/j.anbehav.2009.06.033

    Google Scholar 

  • Oxnard CE (2004) Brain evolution: mammals, primates, chimpanzees, and humans. Int J Primatol 25(5):1127–1158. doi:10.1023/B:IJOP.0000043355.96393.8b99

    Google Scholar 

  • Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):2728–2735. doi:10.1093/cercor/bhp026

    PubMed Central  PubMed  Google Scholar 

  • Pavlicev M, Cheverud JM, Wagner GP (2011) Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc R Soc B (Biol Sci) 278(1713):1903–1912. doi:10.1098/rspb 2010.2113

    Google Scholar 

  • Pearl J (2009) Causality: models, reasoning, and inference. Cambridge University Press, New York

    Google Scholar 

  • Pennington BF, Filipek PA, Lefly D, Chhabidas N, Kennedy DN, Simon JH, DeFries JC (2000) A twin MRI study of size variation in the human brain. J Cogn Neurosci 12:223–232

    PubMed  Google Scholar 

  • Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE (2007) Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp 28(6):464–473. doi:10.1002/hbm.20398

    PubMed  Google Scholar 

  • Pepperberg IM, Carey S (2012) Grey parrot number aquisition: the inference of cardinal value from ordinal position on the number list. Cognition 125(2):219–232. doi:10.1016/j.cognition.2012.07.003

    PubMed Central  PubMed  Google Scholar 

  • Pertea M, Salzberg SL (2010) Between a chicken and a grape: estimating the number of human genes. Genome Biol 11(5):206. doi:10.1186/gb-2010-11-5-206100

    PubMed Central  PubMed  Google Scholar 

  • Pettit M (2010) The problem of racoon intelligence in behaviorist America. Br J Hist Sci 43:391–421. doi:10.1017/S0007087409990677

    Google Scholar 

  • Pfefferbaum A, Sullivan EV, Swan GE, Carmelli D (2000) Brain structure in men remains highly heritable in the seventh and eight decades of life. Neurobiol Aging 84:189–202

    Google Scholar 

  • Pilley JW, Reid AK (2011) Border collie comprehends object names as verbal referents. Behav Process 86(2):184–195. doi:10.1016/j.beproc.2010.11.007

    Google Scholar 

  • Platek SM, Keenan P, Shakelford TK (eds) (2007) Evolutionary cognitive neuroscience. The MIT Press, Cambridge, MA

    Google Scholar 

  • Posthuma D, De Geus EJC, Baaré WFC, Hulshoff Pol HE, Kahn RS, Boomsma DI (2002a) The association between brain volume and intelligence is genetic in origin. Nature Neurosci 5:83–84

    PubMed  Google Scholar 

  • Posthuma D, de Geus EJC, Boomsma DI (2002b) Genetic contributions to anatomical, behavioral, and neurophysiological indices of cognition. In: Plomin R, DeFries JC, Craig IC, McGuffin P (eds) Behavioral genetics in the postgenomic era. APA Books, Washington, DC

    Google Scholar 

  • Pritchard JK, Pickrell JK, Coop G (2010) The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol 20(4):R208–R215. doi:10.1016/j.cub.2009.11.055

    PubMed Central  PubMed  Google Scholar 

  • Radman Z (ed) (2013) The hand, an organ of the mind. Cambridge, MIT Press 101

    Google Scholar 

  • Raine NE, Chittka L (2008) The correlation of learning speed and natural foraging success in bumble-bees. Proc R Soc B (Biol Sci) 275(1636):803–808. doi:10.1098/rspb 2007.1652

    Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735

    PubMed Central  PubMed  Google Scholar 

  • Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging 25(3):377–396. doi:10.1016/S0197-4580(03)00118-0

    PubMed  Google Scholar 

  • Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci USA 99(7):4436–4441. doi:10.1073/pnas.062041299

    PubMed Central  PubMed  Google Scholar 

  • Reeve CL, Lam H (2005) The psychometric paradox of practice effects due to retesting: measurement invariance and stable ability estimates in the face of observed score changes. Intelligence 33:535–549. doi:10.1016/j.intell.2005.05.003

    Google Scholar 

  • Reeve CL, Meyer RD, Bonaccio S (2006) Intelligence–personality associations reconsidered: the importance of distinguishing between general and narrow dimensions of intelligence. Intelligence 34:387–403. doi:10.1016/j.intell.2005.11.001

    Google Scholar 

  • Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, Koellinger PD (2013) GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340(6139):1467–1471. doi:10.1126/science.1235488

    PubMed Central  PubMed  Google Scholar 

  • Roberts RC (1967) Some concepts and methods in quantitative genetics behavior–genetic analysis. McGraw-Hill, New York, pp 214–257

    Google Scholar 

  • Rockman MV (2012) The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66(1):1–17. doi:10.1111/j.1558-5646.2011.01486.x

    PubMed Central  PubMed  Google Scholar 

  • Rogers J, Kochunov P, Lancaster J, Shelledy W, Glahn D, Blangero J, Fox P (2007) Heritability of brain volume, surface area and shape: an MRI study in an extended pedigree of baboons. Hum Brain Mapp 28(6):576–583. doi:10.1002/hbm.20407

    PubMed  Google Scholar 

  • Rogers J, Shelton SE, Shelledy W, Garcia R, Kalin NH (2008) Genetic influence on behavioral inhibition and anxiety in juvenile rhesus macaques. Genes Brain Behav 7:463–469. doi:10.1111/j.1601-183X.2007.00381.x

    PubMed Central  PubMed  Google Scholar 

  • Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9(5):250–257. doi:10.1016/j.tics.2005.03.005

    PubMed  Google Scholar 

  • Ruff CB, Trinkaus E, Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. Nature 387:173–176

    PubMed  Google Scholar 

  • Rushton JP (1997) Race, intelligence, and the brain: The errors and omissions of the ‘revised’ edition of S. J. Gould’s the mismeasure of man (1996). Personal Individ Differ 23(169–180):103

    Google Scholar 

  • Rushton JP, Ankney CD (2009) Whole brain size and general mental ability: a review. Int J Neurosci 119(5):691–731. doi:10.1080/00207450802325843

    PubMed  Google Scholar 

  • Russell DA (1983) Exponential evolution: implications for intelligent extraterrestrial life. Adv Space Res 3(9):95–103

    PubMed  Google Scholar 

  • Salthouse TA (2013) Evaluating the correspondence of different cognitive batteries. Assessment. doi:10.1177/1073191113486690

    PubMed  Google Scholar 

  • Sauce B, Matzel LD (2013) The causes of variation in learning and behavior: why individual differences matter. Front Psychol: Personal Individ Differ 4:1–10

    Google Scholar 

  • Scarr S (1996) How people make their own environments: implications for parents and policy makers. Psychol Public Policy Law 2:204–228

    Google Scholar 

  • Schmidt F (2010) Detecting and correcting the lies that data tell. Perspect Psychol Sci 5(3):233. doi:10.1177/1745691610369339

    Google Scholar 

  • Schmithorst VJ (2009) Developmental sex differences in the relation of neuroanatomical connectivity to intelligence. Intelligence 37:164–173. doi:10.1016/j.intell.2008.07.001

    PubMed Central  PubMed  Google Scholar 

  • Schmithorst VJ, Yuan W (2010) White matter development during adolescence as shown by diffusion MRI. Brain Cogn 72:16–25. doi:10.1016/j.bandc.2009.06.005104

    PubMed  Google Scholar 

  • Schmitt JE, Wallace GL, Lenroot RK, Ordaz SE, Greenstein D, Clasen L, Giedd JN (2010) A twin study of intracerebral volumetric relationships. Behav Genet 40(2):114–124. doi:10.1007/s10519-010-9332-6

    PubMed Central  PubMed  Google Scholar 

  • Scott JP (1990) Foreword. In: Hahn ME, Hewitt JK, Henderson ND, Benno RH (eds) Developmental behavior genetics: neural, biometrical, and evolutionary approaches. Oxford, New York

    Google Scholar 

  • Segal N (2012) Born together-reared apart: the landmark Minnesota twin study. Harvard University Press, Cambridge

    Google Scholar 

  • Sesardic N (2005) Making sense of heritability. Cambridge University Press, Cambridge

    Google Scholar 

  • Shaw P (2007) Intelligence and the developing human brain. BioEssays 29(10):962–973. doi:10.1002/bies.20641

    PubMed  Google Scholar 

  • Shermer MB (2002) Stephen Jay Gould as historian of science and scientific historian, popular scientist and scientific popularizer. Soc Stud Sci 32:489–525

    PubMed  Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Scribner, New York

    Google Scholar 

  • Shettleworth SJ (2012) Modularity, comparative cognition and human uniqueness. Philos Trans R Soc B Biol Sci 367(1603):2794–2802. doi:10.1098/rstb.2012.0211

    Google Scholar 

  • Shumway CA (2008) Habitat complexity, brain, and behavior. Brain Behav Evol 72(2):123–134. doi:10.1159/000151472105

    PubMed  Google Scholar 

  • Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Ge R (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329(5987):72–75. doi:10.1126/science.1189406

    PubMed  Google Scholar 

  • Smaers JB, Soligo C (2013) Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc R Soc B (Biol Sci) 280:1759. doi:10.1098/rspb.2013.0269

    Google Scholar 

  • Smaers JB, Steele J, Case CR, Amunts K (2013) Laterality and the evolution of the prefronto-cerebellar system in anthropoids. Ann N Y Acad Sci 1288:59–69. doi:10.1111/nyas.12047

    PubMed  Google Scholar 

  • Smit DJ, Luciano M, Bartels M, van Beijsterveldt CE, Wright MJ, Hansell NK, Boomsma DI (2010) Heritability of head size in Dutch and Australian twin families at ages 0–50 years. Twin Res Human Genet 13(4):370–380. doi:10.1375/twin.13.4.370

    Google Scholar 

  • Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L (2005) Big brains, enhanced cognition, and response of birds to novel environments. Proc Natl Acad Sci USA 102(15):5460–5465. doi:10.1073/pnas.0408145102

    PubMed Central  PubMed  Google Scholar 

  • Sol D, Bacher S, Reader SM, Lefebvre L (2008) Brain size predicts the success of mammal species introduced into novel environments. Am Nat 172:S63–S71. doi:10.1086/588304

    PubMed  Google Scholar 

  • Soyfer VN (2001) The consequences of political dictatorship for Russian science. Nat Rev Genet 2(9):723–729. doi:10.1038/35088598106

    PubMed  Google Scholar 

  • Sparks CS, Jantz RL (2002) A reassessment of human cranial plasticity: Boas revisited. Proc Natl Acad Sci USA 99(23):14636–14639. doi:10.1073/pnas.222389599

    PubMed Central  PubMed  Google Scholar 

  • Spuhler JN (1982) The use and misuse of the Mismeasure of Man. Review of Gould, S. J. (1981) The Mismeasure of Man. Contemp Psychol 27:933–935

    Google Scholar 

  • Stanford CB (1995) Chimpanzee hunting behavior and human evolution. Am Sci 83:256–261

    Google Scholar 

  • Sternthal S (2010) Moscow’s stray dogs. Financial Times

  • Tarka M, ÅKesson M, Beraldi D, Hernández-Sánchez J, Hasselquist D, Bensch S, Hansson B (2010) A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warbels. Proc R Soc B (Biol Sci) 277:2361–2369. doi:10.1098/rspb.2010.0033

    Google Scholar 

  • Taylor AH, Miller R, Gray RD (2012) New Caledonian crows reason about hidden causal agents. Proc Natl Acad Sci USA 109(40):16389–16391. doi:10.1073/pnas.1208724109

    PubMed Central  PubMed  Google Scholar 

  • Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, Huttunen M, Toga AW (2001) Genetic influences on brain structure. Nat Neurosci 4(12):1253–1258. doi:10.1038/nn758

    PubMed  Google Scholar 

  • Thornton A, Lukas D (2012) Individual variation in cognitive performance: developmental and evolutionary perspectives. Philos Trans R Soc B Biol Sci 367(1603):2773–2783. doi:10.1098/rstb.2012.0214107

    Google Scholar 

  • Thornton A, Samson J (2012) Innovative problem solving in wild meerkats. Anim Behav 83(6):1459–1468. doi:10.1016/j.anbehav.2012.03.018

    Google Scholar 

  • Thurstone LL, Thurstone TG (1941) Factorial studies of intelligence. University of Chicago Press, Chicago

    Google Scholar 

  • Tooby J, Cosmides L (2005) Conceptual foundations of evolutionary psychology. In: Buss DM (ed) Evolutionary psychology handbook. Wiley, New York

    Google Scholar 

  • Tramo MJ, Loftus WC, Thomas CE, Green RL, Mott LA, Gazzaniga MS (1995) Surface area of human cerebral cortex and its gross morphological subdivisions: in vivo measurements in monozygotic twins suggest differential hemisphere effects of genetic factors. J Cogn Neurosci 7(2):292–302

    PubMed  Google Scholar 

  • Tramo MJ, Loftus WC, Stukel TA, Green RL, Weaver JB, Gazzaniga MS (1998) Brain size, head size, and intelligence quotient in monozygotic twins. Neurology 50:1246–1252

    PubMed  Google Scholar 

  • Trinkaus E (2007) Human evolution: neandertal gene speaks out. Curr Biol 17(21):R917–R919. doi:10.1016/j.cub.2007.09.055

    PubMed  Google Scholar 

  • Trut LN (1999) Early canid domestication: the farm-fox experiment. Am Sci 87:160–169

    Google Scholar 

  • Turkheimer E (2000) Three laws of behavior genetics and what they mean. Curr Dir Psychol Sci 9:160–164

    Google Scholar 

  • van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29(23):7619–7624. doi:10.1523/JNEUROSCI.1443-09.2009

    PubMed  Google Scholar 

  • van der Maas HL, Dolan CV, Grasman RP, Wicherts JM, Huizenga HM, Raijmakers ME (2006) A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychol Rev 114(4):842–861. doi:10.1037/0033-295X.113.4.842

    Google Scholar 

  • van der Woude E, Smid HM, Chittka L, Huigens ME (2013) Breaking Haller’s rule: brain–body size isometry in a minute parasitic wasp. Brain Behav Evol 81(2):86–92. doi:10.1159/000345945

    PubMed  Google Scholar 

  • van Oers K, Mueller JC (2010) Evolutionary genomics of animal personality. Philos Trans R Soc Biol Sci 365(1560):3991–4000. doi:10.1098/rstb 2010.0178

    Google Scholar 

  • Van Valen L (1974) Brain size and intelligence in man. Am J Phys Anthropol 40(3):417–424. doi:10.1002/ajpa.1330400314

    PubMed  Google Scholar 

  • Varki A, Geschwind DH, Eichler EA (2008) Explaining human uniqueness: genome interactions with environment, behavior and culture. Nat Rev Genet 9:749–763. doi:10.1038/nrg2428

    PubMed Central  PubMed  Google Scholar 

  • Vernon PE (1965) Ability factors and environmental influences. Am Psychol 20:723–733

    PubMed  Google Scholar 

  • Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era: concepts and misconceptions. Nat Rev Genet 9(4):255–266. doi:10.1038/nrg2322

    PubMed  Google Scholar 

  • Vonnegut K (1961) Harrison Bergeron. The Magazine of Fantasy and Science Fiction

  • Wahlsten D, Metten P, Phillips TJ, Boehm SL II, Burkhart-Kasch S, Dorow J, Crabbe J (2003) Different data from different labs: lessons from studies of gene–environment interaction. J Neurobiol 54:283–311

    PubMed  Google Scholar 

  • Wang ET, Kodama G, Baldi P, Moyzis RK (2006) Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci USA 103:135–140. doi:10.1073/pnas.0509691102

    PubMed Central  PubMed  Google Scholar 

  • Wass C, Denman-Brice A, Rios C, Light KR, Kolata S, Smith AM, Matzel LD (2012) Covariation of learning and “reasoning” abilities in mice: evolutionary conservation of the operations of intelligence. J Exp Psychol Anim Behav Process 38(2):109–124. doi:10.1037/a0027355

    PubMed  Google Scholar 

  • Wiederman SD, O’Carroll DC (2013) Selective attention in an insect visual neuron. Curr Biol 23(2):156–161. doi:10.1016/j.cub.2012.11.048

    PubMed  Google Scholar 

  • Wilkins AS (2007) Between “design” and “bricolage”: genetic networks, levels of selection, and adaptive evolution. Proc Natl Acad Sci USA 104:8590–8596. doi:10.1073/pnas.0701044104

    PubMed Central  PubMed  Google Scholar 

  • Wilkinson A, Huber L (2012) Cold-blooded cognition: reptilian cognitive abilities. In: Vonk J, Shackelford TK (eds) The Oxford handbook of comparative evolutionary psychology. Oxford University Press, Oxford

    Google Scholar 

  • Willemet R (2013) Reconsidering the evolution of brain, cognition, and behavior in birds and mammals. Front Psychol: Comp Psychol 4:1–26. doi:10.3389/fpsyg.2013.00396110

    Google Scholar 

  • Williams GC (1992) Natural selection: domains, levels, and challenges. Oxford University Press, New York

    Google Scholar 

  • Wilmer JB, Germine L, Chabris CF, Chatterjee G, Williams M, Loken E, Duchaine B (2010) Human face recognition ability is specific and highly heritable. Proc Natl Acad Sci USA 107(11):5238–5241. doi:10.1073/pnas.0913053107

    PubMed Central  PubMed  Google Scholar 

  • Wilson RS (1983) The Louisville Twin Study: developmental synchronies in behavior. Child Dev 54(2):298–316

    PubMed  Google Scholar 

  • Wilson AC (1985) The molecular basis of evolution. Sci Am 253(4):164–173

    PubMed  Google Scholar 

  • Wood B (2010) Colloquium paper: reconstructing human evolution: achievements, challenges, and opportunities. Proc Natl Acad Sci USA 107(Suppl 2):8902–8909. doi:10.1073/pnas.1001649107

    PubMed Central  PubMed  Google Scholar 

  • Yan C, Gong G, Wang J, Wang D, Liu D, Zhu C, He Y (2011) Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex 21(2):449–458. doi:10.1093/cercor/bhq111

    PubMed  Google Scholar 

  • Yao L, Brown JP, Stampanoni M, Marone F, Isler K, Martin RD (2012) Evolutionary change in the brain size of bats. Brain Behav Evol 80(1):15–25. doi:10.1159/000338324

    PubMed  Google Scholar 

  • Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, Wang J (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329(5987):75–78. doi:10.1126/science.1190371

    PubMed Central  PubMed  Google Scholar 

  • Zenderland L (1988) On interpreting photographs, faces and the past. Am Psychol 42:743–744

    Google Scholar 

Download references

Conflict of interest

The author declares that he has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Bouchard Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchard, T.J. Genes, Evolution and Intelligence. Behav Genet 44, 549–577 (2014). https://doi.org/10.1007/s10519-014-9646-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-014-9646-x

Keywords

Navigation