Skip to main content

Intelligence: Evolutionary Biological Foundations and Perspectives

  • Chapter
  • First Online:
Intelligence - Theories and Applications
  • 889 Accesses

Abstract

Although the term intelligence is now used in a wide variety of fields to explain the emergence of complex causalities, intelligence is understood here primarily as the ability of neural systems to solve problems in cognitive decision-making processes. Cognition and intelligent behavior are therefore primary objects, but not subjects, of chance-driven biological evolution. Recent work in neurobiology and comparative genomics has now shown how, starting from simple neural systems, forms capable of solving comparably complex problems in cognitive processes have evolved in all major groups of the animal kingdom. Although this cognition is based on the same basic cellular elements (neurons), it is realized in central nervous structures (brains), some of which have developed quite differently in animal evolution. By comparing the nervous systems of animals capable of higher intelligent sensory performance, the first common properties and principles are now becoming apparent, which are prerequisites for the emergence of higher intelligent systems (e.g., the density, but not number, of neuronal elements). Such common rules are probably also constraints in the development of artificial intelligent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Children were presented with one marshmallow and given a choice—eat it immediately or wait to get two later. The experiment also became known as the Marshmallow Test (Walter Mischel 2014, Settlers, ISBN 9783827500434).

  2. 2.

    Amniotes are terrestrial vertebrates that can reproduce independently of water through embryonic shells, whereas amphibians depend on it for embryonic development and produce tadpoles as larval stages postembryonically.

  3. 3.

    Allometry relates organ size to body size; the brain follows a power function with an exponent of 0.6–0.8, meaning that as body size increases, brains become larger in absolute terms but smaller in relative terms (Roth, G., and U. Dicke. 2005. Evolution of the brain and intelligence. Trends Cogn. Sci. 9:250–257, Roth, G., and U. Dicke. 2012. Evolution of the brain and intelligence in primates. Prog Brain Res. 195:413–430).

References

  • Albertin, C. B., Simakov, O., Mitros, T., Wang, Z. Y., Pungor, J. R., Edsinger-Gonzales, E., Brenner, S., Ragsdale, C. W., & Rokhsar, D. S. (2015). The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 524, 220–224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boeckle, M., & Bugnyar, T. (2012). Long-term memory for affiliates in ravens. Current Biology, 22, 801–806.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosch, T. C. G., Klimovich, A., Domazet-Loso, T., Grunder, S., Holstein, T. W., Jekely, G., Miller, D. J., Murillo-Rincon, A. P., Rentzsch, F., Richards, G. S., Schroder, K., Technau, U., & Yuste, R. (2017). Back to the basics: Cnidarians start to fire. Trends in Neurosciences, 40, 92–105.

    Article  PubMed  Google Scholar 

  • Bshary, R., & Brown, C. (2014). Fish cognition. Current Biology, 24, R947–R950.

    Article  PubMed  Google Scholar 

  • Chapman, J. A., Kirkness, E. F., Simakov, O., Hampson, S. E., Mitros, T., Weinmaier, T., Rattei, T., Balasubramanian, P. G., Borman, J., Busam, D., Disbennett, K., Pfannkoch, C., Sumin, N., Sutton, G. G., Viswanathan, L. D., Walenz, B., Goodstein, D. M., Hellsten, U., Kawashima, T., … Steele, R. E. (2010). The dynamic genome of hydra. Nature, 464, 592–596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charrier, C., Joshi, K., Coutinho-Budd, J., Kim, J. E., Lambert, N., de Marchena, J., Jin, W. L., Vanderhaeghen, P., Ghosh, A., Sassa, T., & Polleux, F. (2012). Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell, 149, 923–935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chimpanzee, S., & Analysis, C. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87. https://doi.org/10.1038/nature04072

    Article  Google Scholar 

  • Clayton, N., & Emery, N. (2005). Corvid cognition. Current Biology, 15, R80–R81.

    Article  PubMed  Google Scholar 

  • Cruse, H., & Wehner, R. (2011). No need for a cognitive map: Decentralized memory for insect navigation. PLoS Computational Biology, 7, e1002009.

    Article  PubMed  PubMed Central  Google Scholar 

  • David, C. N., Ozbek, S., Adamczyk, P., Meier, S., Pauly, B., Chapman, J., Hwang, J. S., Gojobori, T., & Holstein, T. W. (2008). Evolution of complex structures: Minicollagens shape the cnidarian nematocyst. Trends in Genetics, 24, 431–438.

    Article  PubMed  Google Scholar 

  • Dennis, M. Y., Nuttle, X., Sudmant, P. H., Antonacci, F., Graves, T. A., Nefedov, M., Rosenfeld, J. A., Sajjadian, S., Malig, M., Kotkiewicz, H., Curry, C. J., Shafer, S., Shaffer, L. G., de Jong, P. J., Wilson, R. K., & Eichler, E. E. (2012). Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell, 149, 912–922.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N., & Emslie, H. (2000). A neural basis for general intelligence. Science, 289, 457–460.

    Article  PubMed  Google Scholar 

  • Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306, 1903–1907.

    Article  PubMed  Google Scholar 

  • Emery, N. J., & Clayton, N. S. (2005). Evolution of the avian brain and intelligence. Current Biology, 15, R946–R950.

    Article  PubMed  Google Scholar 

  • Fiorito, G., & Chichery, R. (1995). Lesions of the vertical lobe impair visual discrimination learning by observation in Octopus vulgaris. Neuroscience Letters, 192, 117–120.

    Article  PubMed  Google Scholar 

  • Fiorito, G., & Scotto, P. (1992). Observational learning in Octopus vulgaris. Science, 256, 545–547.

    Article  PubMed  Google Scholar 

  • Florio, M., Albert, M., Taverna, E., Namba, T., Brandl, H., Lewitus, E., Haffner, C., Sykes, A., Wong, F. K., Peters, J., Guhr, E., Klemroth, S., Prufer, K., Kelso, J., Naumann, R., Nusslein, I., Dahl, A., Lachmann, R., Paabo, S., & Huttner, W. B. (2015). Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science, 347, 1465–1470.

    Article  PubMed  Google Scholar 

  • Florio, M., Heide, M., Pinson, A., Brandl, H., Albert, M., Winkler, S., Wimberger, P., Huttner, W. B., & Hiller, M. (2018). Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. eLife, 7, e32332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca-Azevedo, K., & Herculano-Houzel, S. (2012). Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. Proceedings of the National Academy of Sciences, 109, 18571–18576.

    Article  Google Scholar 

  • Fox, K. C. R., Muthukrishna, M., & Shultz, S. (2017). The social and cultural roots of whale and dolphin brains. Nature Ecology & Evolution, 1, 1699–1705.

    Article  Google Scholar 

  • Geschwind, D. H., & Konopka, G. (2012). Neuroscience: Genes and human brain evolution. Nature, 486, 481–482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold, D. A., Katsuki, T., Li, Y., Yan, X., Regulski, M., Ibberson, D., Holstein, T., Steele, R. E., Jacobs, D. K., & Greenspan, R. J. (2019). The genome of the jellyfish Aurelia and the evolution of animal complexity. Nature Ecology and Evolution, 3, 96–104.

    Article  PubMed  Google Scholar 

  • Guerrier, S., Coutinho-Budd, J., Sassa, T., Gresset, A., Jordan, N. V., Chen, K., Jin, W. L., Frost, A., & Polleux, F. (2009). The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell, 138, 990–1004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Güntürkün, O., & Bugnyar, T. (2016). Cognition without cortex. Trends in Cognitive Sciences, 20, 291–303.

    Article  PubMed  Google Scholar 

  • Harrison, T. (2010). Anthropology. Apes among the tangled branches of human origins. Science, 327, 532–534.

    Article  PubMed  Google Scholar 

  • Hayashi, T., Hou, Y., Glasser, M. F., Autio, J. A., Knoblauch, K., Inoue-Murayama, M., Coalson, T., Yacoub, E., Smith, S., Kennedy, H., & Van Essen, D. C. (2021). The nonhuman primate neuroimaging and neuroanatomy project. NeuroImage, 229, 117726.

    Article  PubMed  Google Scholar 

  • Herculano-Houzel, S. (2020). Birds do have a brain cortex-and think. Science, 369, 1567–1568.

    Article  PubMed  Google Scholar 

  • Hirth, F., Kammermeier, L., Frei, E., Walldorf, U., Noll, M., & Reichert, H. (2003). An urbilaterian origin of the tripartite brain: Developmental genetic insights from Drosophila. Development, 130, 2365–2373.

    Article  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). Propagation of electrical signals along giant nerve fibers. Proceedings of the Royal Society of London - Series B: Biological Sciences, 140, 177–183.

    Google Scholar 

  • Holstein, T., & Tardent, P. (1984). An ultrahigh-speed analysis of exocytosis: Nematocyst discharge. Science, 223, 830–833.

    Article  PubMed  Google Scholar 

  • Jarvis, E. D., Güntürkün, O., Bruce, L., Csillag, A., Karten, H., Kuenzel, W., Medina, L., Paxinos, G., Perkel, D. J., Shimizu, T., Striedter, G., Wild, J. M., Ball, G. F., Dugas-Ford, J., Durand, S. E., Hough, G. E., Husband, S., Kubikova, L., Lee, D. W., … C. Avian Brain Nomenclature. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews. Neuroscience, 6, 151–159.

    Article  PubMed  Google Scholar 

  • Kabadayi, C., Taylor, L. A., von Bayern, A. M., & Osvath, M. (2016). Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains. Royal Society Open Science, 3, 160104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandel, E. R., Koester, J. D., Mack, S. H., & Siegelbaum, S. A. (2021). Principles of neural science (6th ed.). McGraw-Hill Education.

    Google Scholar 

  • Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., Hublin, J. J., Hanni, C., Fortea, J., de la Rasilla, M., Bertranpetit, J., Rosas, A., & Paabo, S. (2007). The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biology, 17, 1908–1912.

    Article  PubMed  Google Scholar 

  • Kronenberg, Z. N., Fiddes, I. T., Gordon, D., Murali, S., Cantsilieris, S., Meyerson, O. S., Underwood, J. G., Nelson, B. J., Chaisson, M. J. P., Dougherty, M. L., Munson, K. M., Hastie, A. R., Diekhans, M., Hormozdiari, F., Lorusso, N., Hoekzema, K., Qiu, R., Clark, K., Raja, A., … Eichler, E. E. (2018). High-resolution comparative analysis of great ape genomes. Science, 360, eaar6343.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leclere, L., Horin, C., Chevalier, S., Lapebie, P., Dru, P., Peron, S., Jager, M., Condamine, T., Pottin, K., Romano, S., Steger, J., Sinigaglia, C., Barreau, C., Quiroga Artigas, G., Ruggiero, A., Fourrage, C., Kraus, J. E. M., Poulain, J., Aury, J. M., … Copley, R. R. (2019). The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nature Ecology & Evolution, 3, 801–810.

    Article  Google Scholar 

  • Locke, D. P., Hillier, L. W., Warren, W. C., Worley, K. C., Nazareth, L. V., Muzny, D. M., Yang, S. P., Wang, Z., Chinwalla, A. T., Minx, P., Mitreva, M., Cook, L., Delehaunty, K. D., Fronick, C., Schmidt, H., Fulton, L. A., Fulton, R. S., Nelson, J. O., Magrini, V., et al. (2011). Comparative and demographic analysis of orangutan genomes. Nature, 469, 529–533.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., Aureli, F., Baker, J. M., Bania, A. E., Barnard, A. M., Boogert, N. J., Brannon, E. M., Bray, E. E., Bray, J., Brent, L. J., Burkart, J. M., Call, J., Cantlon, J. F., Cheke, L. G., … Zhao, Y. (2014). The evolution of self-control. Proceedings of the National Academy of Sciences of the United States of America, 111, E2140–E2148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao, Y., Catacchio, C. R., Hillier, L. W., Porubsky, D., Li, R., Sulovari, A., Fernandes, J. D., Montinaro, F., Gordon, D. S., Storer, J. M., Haukness, M., Fiddes, I. T., Murali, S. C., Dishuck, P. C., Hsieh, P., Harvey, W. T., Audano, P. A., Mercuri, L., Piccolo, I., … Eichler, E. E. (2021). A high-quality bonobo genome refines the analysis of hominid evolution. Nature, 594, 77–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marino, L. (2002). Convergence of complex cognitive abilities in cetaceans and primates. Brain, Behavior and Evolution, 59, 21–32.

    Article  PubMed  Google Scholar 

  • Mischel, W., & Underwood, B. (1974). Instrumental ideation in delay of gratification. Child Development, 45, 1083–1088.

    Google Scholar 

  • Mischel, W. (2015). The Marshmallow test: Why self-control is the engine of success. Little, Brown.

    Google Scholar 

  • Mischel, W., Shoda, Y., & Rodriguez, M. I. (1989). Delay of gratification in children. Science, 244, 933–938.

    Article  PubMed  Google Scholar 

  • Moroz, L. L., Kocot, K. M., Citarella, M. R., Dosung, S., Norekian, T. P., Povolotskaya, I. S., Grigorenko, A. P., Dailey, C., Berezikov, E., Buckley, K. M., Ptitsyn, A., Reshetov, D., Mukherjee, K., Moroz, T. P., Bobkova, Y., Yu, F., Kapitonov, V. V., Jurka, J., Bobkov, Y. V., … Kohn, A. B. (2014). The ctenophore genome and the evolutionary origins of neural systems. Nature, 510, 109–114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieder, A., Wagener, L., & Rinnert, P. (2020). A neural correlate of sensory consciousness in a corvid bird. Science, 369, 1626–1629.

    Article  PubMed  Google Scholar 

  • Nüchter, T., Benoit, M., Engel, U., Ozbek, S., & Holstein, T. W. (2006). Nanosecond-scale kinetics of nematocyst discharge. Current Biology, 16, R316–R318.

    Article  PubMed  Google Scholar 

  • Olkowicz, S., Kocourek, M., Lucan, R. K., Portes, M., Fitch, W. T., Herculano-Houzel, S., & Nemec, P. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences of the United States of America, 113, 7255–7260.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pepperberg, I. M. (2006). Grey parrot numerical competence: A review. Animal Cognition, 9, 377–391.

    Article  PubMed  Google Scholar 

  • Pepperberg, I. M., Koepke, A., Livingston, P., Girard, M., & Hartsfield, L. A. (2013). Reasoning by inference: Further studies on exclusion in grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 127, 272–281.

    Article  PubMed  Google Scholar 

  • Plotnik, J. M., de Waal, F. B., & Reiss, D. (2006). Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences of the United States of America, 103, 17053–17057.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plotnik, J. M., Lair, R., Suphachoksahakun, W., & de Waal, F. B. (2011). Elephants know when they need a helping trunk in a cooperative task. Proceedings of the National Academy of Sciences of the United States of America, 108, 5116–5121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Puelles, L., Harrison, M., Paxinos, G., & Watson, C. (2013). A developmental ontology for the mammalian brain based on the prosomeric model. Trends in Neurosciences, 36, 570–578.

    Article  PubMed  Google Scholar 

  • Putnam, N. H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., Salamov, A., Terry, A., Shapiro, H., Lindquist, E., Kapitonov, V. V., Jurka, J., Genikhovich, G., Grigoriev, I. V., Lucas, S. M., Steele, R. E., Finnerty, J. R., Technau, U., Martindale, M. Q., & Rokhsar, D. S. (2007). Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science, 317, 86–94.

    Article  PubMed  Google Scholar 

  • Reichert, H. (2005). A tripartite organization of the urbilaterian brain: Developmental genetic evidence from Drosophila. Brain Research Bulletin, 66, 491–494.

    Article  PubMed  Google Scholar 

  • Rentzsch, F., Juliano, C., & Galliot, B. (2019). Modern genomic tools reveal the structural and cellular diversity of cnidarian nervous systems. Current Opinion in Neurobiology, 56, 87–96.

    Article  PubMed  Google Scholar 

  • Roth, G. (2015). Convergent evolution of complex brains and high intelligence. Philosophical Transactions of the Royal Society B, 370, 20150049.

    Article  Google Scholar 

  • Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9, 250–257.

    Article  PubMed  Google Scholar 

  • Roth, G., & Dicke, U. (2012). Evolution of the brain and intelligence in primates. Progress in Brain Research, 195, 413–430.

    Article  PubMed  Google Scholar 

  • Santos, L. R. & Rosati, A. G. (2015). The evolutionary roots of human decision making. Annual review of psychology 66, 321–347.

    Google Scholar 

  • Scally, A., Dutheil, J. Y., Hillier, L. W., Jordan, G. E., Goodhead, I., Herrero, J., Hobolth, A., Lappalainen, T., Mailund, T., Marques-Bonet, T., McCarthy, S., Montgomery, S. H., Schwalie, P.-C., Tang, Y. A., Ward, M. C., Xue, Y., Yngvadottir, B., Alkan, C., Andersen, L. N., … Durbin, R. (2012). Insights into hominid evolution from the gorilla genome sequence. Nature, 483, 169–175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnell, A. K., & Clayton, N. S. (2019). Cephalopod cognition. Current Biology, 29, R726–R732.

    Article  PubMed  Google Scholar 

  • Schnell, A. K., Amodio, P., Boeckle, M., & Clayton, N. S. (2021a). How intelligent is a cephalopod? Lessons from comparative cognition. Biological Reviews of the Cambridge Philosophical Society, 96, 162–178.

    Article  PubMed  Google Scholar 

  • Schnell, A. K., Boeckle, M., Rivera, M., Clayton, N. S., & Hanlon, R. T. (2021b). Cuttlefish exert self-control in a delay of gratification task. Proceedings of the Biological Sciences, 288, 20203161.

    Google Scholar 

  • Semendeferi, K., Lu, A., Schenker, N., & Damasio, H. (2002). Humans and great apes share a large frontal cortex. Nature Neuroscience, 5, 272–276.

    Article  PubMed  Google Scholar 

  • Shomrat, T., Zarrella, I., Fiorito, G., & Hochner, B. (2008). The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Current Biology, 18, 337–342.

    Article  PubMed  Google Scholar 

  • Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O., & Sestan, N. (2017). Evolution of the human nervous system function, structure, and development. Cell, 170, 226–247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stacho, M., Herold, C., Rook, N., Wagner, H., Axer, M., Amunts, K., & Güntürkün, O. (2020). A cortex-like canonical circuit in the avian forebrain. Science, 369, eabc5534.

    Article  PubMed  Google Scholar 

  • Strausfeld, N. J., & Hirth, F. (2013). Deep homology of arthropod central complex and vertebrate basal ganglia. Science, 340, 157–161.

    Article  PubMed  Google Scholar 

  • Trembley, A. (1744). Mémoires pour servir à l’histoire d’un genre de polypes d’eau douce à bras en forme de cornes. J. & H. Verbeek.

    Book  Google Scholar 

  • Wanninger, A., & Wollesen, T. (2019). The evolution of molluscs. Biological Reviews of the Cambridge Philosophical Society, 94, 102.

    Article  Google Scholar 

  • Watanabe, H., Fujisawa, T., & Holstein, T. W. (2009). Cnidarians and the evolutionary origin of the nervous system. Development, Growth & Differentiation, 51, 167–183.

    Article  Google Scholar 

  • Wehner, R., & Menzel, R. (1969). Homing in the ant Cataglyphis bicolor. Science, 164, 192–194.

    Article  PubMed  Google Scholar 

  • Young, J. Z., Young, J. Z., & Boycott, B. B. (1971). The anatomy of the nervous system of octopus vulgaris. Clarendon Press.

    Google Scholar 

Download references

Acknowledgements

Many thanks to Rainer M. Holm-Hadulla, who gave the impulse for this work and enabled me to look beyond the “edge of my nose” of our research on the nervous system of the Cnidaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Holstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holstein, T.W. (2022). Intelligence: Evolutionary Biological Foundations and Perspectives. In: Holm-Hadulla, R.M., Funke, J., Wink, M. (eds) Intelligence - Theories and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-04198-3_5

Download citation

Publish with us

Policies and ethics