Skip to main content

Advertisement

Log in

Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Tamoxifen (Tam) is widely used in chemotherapy of estrogen receptor-positive breast cancer. It inhibits proliferation and induces apoptosis of breast cancer cells by estrogen receptor-dependent modulation of gene expression, but recent reports have shown that Tam (especially at pharmacological concentrations) has also rapid nongenomic effects. Here we studied the mechanisms by which Tam exerts rapid effects on breast cancer cell viability. In serum-free medium 5–7 μM Tam induced death of MCF-7 and MDA-MB-231 cells in a time-dependent manner in less than 60 min. This was associated with release of mitochondrial cytochrome c, a decrease of mitochondrial membrane potential and an increase in production of reactive oxygen species (ROS). This suggests that disruption of mitochondrial function has a primary role in the acute death response of the cells. Accordingly, bongkrekic acid, an inhibitor of mitochondrial permeability transition, was able to protect MCF-7 cells against Tam. Rapid cell death induction by Tam was not associated with immediate activation of caspase-9 or cleavage of poly (ADP-ribose) polymerase. It was not blocked by the caspase inhibitor z-Val-Ala-Asp-fluoromethylketone either. Diphenylene ionodium (DPI), an inhibitor of NADPH oxidase, was able to prevent Tam-induced cell death but not cytochrome c release, which suggests that ROS act distal to cytochrome c. The pure antiestrogen ICI 182780 (1 μM) could partly oppose the effect of Tam in estrogen receptor positive MCF-7 cells, but not in estrogen receptor negative MDA-MB-231 cells. Pre-culturing MCF-7 cells in the absence of 17β-estradiol (E2) or in the presence of a low Tam concentration (1 μM) made the cells even more susceptible to rapid death induction by 5 or 7 μM Tam. This effect was associated with decreased levels of the anti-apoptotic proteins Bcl-XL and Bcl-2. In conclusion, our results demonstrate induction of a rapid mitochondrial cell death program in breast cancer cells at pharmacological concentrations of Tam, which are achievable in tumor tissue of Tam-treated breast cancer patients. These mechanisms may contribute to the ability of Tam therapy to induce death of breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher B, Constantino JP, Wickerham CD, et al. Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel project P-1 study. J Natl Cancer Inst 1998; 90: 1371–1388.

    Article  CAS  PubMed  Google Scholar 

  2. McKeon VA. The breast cancer prevention trial: Should women at high risk take tamoxifen? J Obstet Gynecol Neonatal Nurs 1999; 28: 34–38.

    CAS  PubMed  Google Scholar 

  3. Radmacher MD, Simon R. Estimation of tamoxifens's efficiency for preventing the formation and growth of breast tumors. J Natl Cancer Inst 2000; 92: 48–53.

    Article  CAS  PubMed  Google Scholar 

  4. Early Breast Cancers Trialist's collaborative group. Tamoxifen for an early breast cancer: An overview of the randomized trials. Lancet 1998; 351: 1451–1467.

    Google Scholar 

  5. Love RR. Tamoxifen therapy in primary breast cancer: Biology, efficacy, and side effects. J Clin Oncol 1989; 7: 803–815.

    CAS  PubMed  Google Scholar 

  6. Marshall E. Tamoxifen: “a big deal”, but a complex hand to play. Science 1998; 280: 196.

    CAS  PubMed  Google Scholar 

  7. Robertson JF. Selective oestrogen receptor modulators/new antioestrogens: A clinical perspective. Cancer Treat Rev 2004; 30: 695–706.

    Article  CAS  PubMed  Google Scholar 

  8. Pasqualini JR. The selective estrogen enzyme modulators in breast cancer: A review. Biochim Biophys Acta 2004; 1654: 123–43.

    CAS  PubMed  Google Scholar 

  9. Jordan VC. Selective estrogen receptor modulation: Concept and consequences in cancer. Cancer Cell 2004; 5: 207–213.

    Article  CAS  PubMed  Google Scholar 

  10. Vergote I, Robertson JF. Fulvestrant is an effective and well-tolerated endocrine therapy for postmenopausal women with advanced breast cancer: Report from clinical trials. Br J Cancer 2004; 90: S11–S14.

    Article  CAS  PubMed  Google Scholar 

  11. Hamm JT. Phase I and II studies of toremifene. Oncology 1997; 11: 19–22.

    CAS  PubMed  Google Scholar 

  12. Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3-year randomized clinical trial. Multiple outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 1999; 282: 637–645.

    Article  CAS  PubMed  Google Scholar 

  13. Lippman ME, Krueger KA, Eckert S, et al. Indicators of lifetime estrogen exposure: Effect on breast cancer incidence and interaction with raloxifene therapy in the multiple outcomes of raloxifene evaluation study participants. J Clin Oncol 2001; 19: 3111–3116.

    CAS  PubMed  Google Scholar 

  14. Taras TL, Wurz GT, DeGregorio MW. In vitro and in vivo biologic effects of ospemifene (FC-1271a) in breast cancer. J Steroid Biochem Mol Biol 2001; 77: 271–279.

    Article  CAS  PubMed  Google Scholar 

  15. Qu Q, Zheng H, Dahllund J, et al. Selective estrogenic effects of a novel triphenylethylene compound, FC1271a, on bone, cholesterol level and reproductive tissues in intact and ovariectomized rats. Endocrinology 2000; 141: 809–820.

    Article  CAS  PubMed  Google Scholar 

  16. Rochefort H, Borgna JL, Evans E. Cellular and molecular mechanism of action of antiestrogens. J Steroid Biochem 1983; 19: 69–74.

    Article  CAS  PubMed  Google Scholar 

  17. Watts CK, Sweeney KJ, Warlters A, Musgrove EA, Sutherland RL. Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells. Breast Cancer Res Treat 1994; 31: 95–105.

    Article  CAS  PubMed  Google Scholar 

  18. Warri AM, Huovinen RL, Laine AM, Martikainen PM, Harkonen PL. Apoptosis in toremifene-induced growth inhibition of human breast cancer cells in vivo and in vitro. J Natl Cancer Inst 1993; 85: 1412–1418.

    CAS  PubMed  Google Scholar 

  19. Thiantanawat A, Long BJ, Brodie AM. Signaling pathways of apoptosis activated by aromatase inhibitors and antiestrogens. Cancer Res 2003; 63: 8037–8050.

    CAS  PubMed  Google Scholar 

  20. Salami S, Karami-Tehrani F. Biochemical studies of apoptosis induced by tamoxifen in estrogen receptor positive and negative breast cancer cell lines. Clin Biochem 2003; 36: 247–253.

    CAS  PubMed  Google Scholar 

  21. Somai S, Chaouat M, Jacob D, et al. Antiestrogens are pro-apoptotic in normal human breast epithelial cells. Int J Cancer 2003; 105: 607–612.

    CAS  PubMed  Google Scholar 

  22. Kandouz M, Lombert A, Perrot JY, et al. Proapoptotic effects of antiestrogens, progestins and androgen in breast cancer cells. J Steroid Biochem Mol Biol 1999; 69: 463–471.

    Article  CAS  PubMed  Google Scholar 

  23. Diel P, Smolnikar K, Michna H. The pure antiestrogen ICI 182780 is more effective in the induction of apoptosis and down regulation of Bcl-2 than tamoxifen in MCF-7 cells. Breast Cancer Res Treat 1999; 58: 87–89.

    Article  CAS  PubMed  Google Scholar 

  24. Ferlini C, Scambia G, Marone M, et al. Tamoxifen induces oxidative stress and apoptosis in oestrogen receptor-negative human cancer cell lines. Br J Cancer 1999; 79: 257–263.

    CAS  PubMed  Google Scholar 

  25. Kim J-A, Kang YS, Jung M-W, Lee SH, Lee YS. Involvement of Ca influx in the mechanism of tamoxifen-induced apoptosis in HepG2 human hepatoblastoma cells. Cancer Lett 1999; 147: 115–123.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Couldwell WT, Song H, Takano T, Lin JHC, Nedergaard M. Tamoxifen-induced enhancement of calcium signaling in glioma and MCF-7 breast cancer cells. Cancer Res 2000; 60: 5395–5400.

    CAS  PubMed  Google Scholar 

  27. Lehenkari P, Parikka V, Rautiala TJ, et al. The effects of tamoxifen and toremifene on bone cells involve changes in plasma membrane ion conductance. J Bone Miner Res 2003; 18: 473–478.

    CAS  PubMed  Google Scholar 

  28. Couldwell WT, Hinton DR, He S. Protein kinase C inhibitors induce apoptosis in human malignant glioma cell lines. FEBS Lett 1994; 345: 43–46.

    Article  CAS  PubMed  Google Scholar 

  29. Gelmann EP. Tamoxifen for the treatment of malignancies other than breast and endometrial carcinoma. Semin Oncol 1997; 24: S65–S70.

    CAS  Google Scholar 

  30. Heerdt AS, Borgen PI. Current status of tamoxifen use: An update for the surgical oncologist. J Surg Oncol 1999; 72: 42–49.

    Article  CAS  PubMed  Google Scholar 

  31. Custodio JB, Moreno AJ, Wallace KB. Tamoxifen inhibits induction of the mitochondrial permeability transition by Ca2+ and inorganic phosphate. Toxicol Appl Pharmacol 1998; 152: 10–17.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W, Couldwell WT, Song H, Takano T, Lin JH, Nedergaard M. Tamoxifen-induced enhancement of calcium signaling in glioma and MCF-7 breast cancer cells. Cancer Res 2000; 60: 5395–5400.

    CAS  PubMed  Google Scholar 

  33. Cardoso CM, Moreno AJ, Almeida LM, Custodio JB. Comparison of the changes in adenine nucleotides of rat liver mitochondria induced by tamoxifen and 4-hydroxytamoxifen. Toxicol In Vitro 2003; 17: 663–670.

    Article  CAS  PubMed  Google Scholar 

  34. Cardoso CM, Custodio JB, Almeida LM, Moreno AJ. Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency. Toxicol Appl Pharmacol 2001; 176: 145–152.

    Article  CAS  PubMed  Google Scholar 

  35. Dietze EC, Caldwell LE, Grupin SL, Mancini M, Seewaldt VL. Tamoxifen but not 4-hydroxytamoxifen initiates apoptosis in p53(−) normal human mammary epithelial cells by inducing mitochondrial depolarization. J Biol Chem 2001; 276: 5384–5394.

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz Z, Sylvia VL, Guinee T, Dean DD, Boyan BD. Tamoxifen elicts its anti-estrogen effects in growth plate chondrocytes by inhibiting protein kinase C. J Steroid Biochem Mol Biol 2002; 80: 401–410.

    Article  CAS  PubMed  Google Scholar 

  37. Boyan BD, Sylvia VL, Frambach T, et al. Estrogen-dependent rapid activation of protein kinase C in estrogen-receptor positive MCF-7 breast cancer cells and in estrogen-receptor negative HCC38 cells is membrane-mediated and inhibited be tamoxifen. Endocrinology 2003; 144: 1812–1824.

    Article  CAS  PubMed  Google Scholar 

  38. Tuquet C, Dupont J, Mesneau A, Roussaux J. Effects of tamoxifen in electron transport chain of isolated rat liver mitochondria. Cell Biol Toxicol 2000; 16: 207–219.

    Article  CAS  PubMed  Google Scholar 

  39. Castedo M, Macho A, Zamzami N, et al. Mitochondrial perturbations define lymphocytes undergoing apoptotic depletion in vivo. Eur J Immunol 1995; 25: 3277–3284.

    CAS  PubMed  Google Scholar 

  40. Zamzami N. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995; 182: 367–377.

    Article  CAS  PubMed  Google Scholar 

  41. Zamzami N, Marchetti P, Castedo M, et al. Inhibitors of permeability transition interfere with the disruption of the mitochondrial membrane potential during apoptosis. FEBS Lett 1996; 384: 153–157.

    Article  Google Scholar 

  42. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399: 483–487.

    CAS  PubMed  Google Scholar 

  43. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biology 2000; 2: 156–162.

    CAS  PubMed  Google Scholar 

  44. Lemasters JJ, Qian T, Bradham CA, et al. Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr 1999; 31: 305–319.

    Article  CAS  PubMed  Google Scholar 

  45. Marzo I, Brenner C., Zamzami M, et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 1998; 281: 2027–2031.

    Article  CAS  PubMed  Google Scholar 

  46. Li P, Nijhawan D, Budihardjo L, et al. Cytochrome c and dATP -dependent formation of Apaf-17 - caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489.

    Article  CAS  PubMed  Google Scholar 

  47. Leist M, Jaattela M. Four deaths and a funeral; From caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2: 589–598.

    Article  CAS  PubMed  Google Scholar 

  48. Strasser A, O'Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 2000; 69: 217–245.

    Article  CAS  PubMed  Google Scholar 

  49. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE and Poirier GG. Specific proteolytic cleavage of poly(adenosinediphosphate ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Res 1993; 53: 3976–3985.

    CAS  PubMed  Google Scholar 

  50. Los M, Wesselborg S, Schulze-Osthoff K. The role of caspases in development, immunity and apoptotic signal transduction: Lessons from knockout mice. Immunity 1999; 10: 629–639.

    Article  CAS  PubMed  Google Scholar 

  51. Yang J, Xuesong L, Bhalla K, et al. Prevention of apoptosis by bcl-2: Release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang HJ, Zhao W, Venkataraman S, et al. Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human MCF-7 breast cancer cells involves reactive oxygen species. J Biol Chem 2002; 277: 20919–20926.

    CAS  PubMed  Google Scholar 

  53. Furlong IJ, Lopez-Mediavilla C, Ascaso R, Lopez-Rivas A, Collins MK. Induction of apoptosis by valinomycin: Mitochondrial permeability transition causes intracellular acidification. Cell Death Differ 1998; 5: 214–221.

    Article  CAS  PubMed  Google Scholar 

  54. Scarlett JL, Shead PW, Hughes G, Legerwood EC, Kir HH, Murphy MP. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett 2000; 475: 267–272.

    Article  CAS  PubMed  Google Scholar 

  55. Heiskanen K, Bhat M, Wang H, Ma J, Nieminen A. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J Biol Chem 1999; 26: 5654–5658.

    Google Scholar 

  56. Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM. Membrane potential can be determined in individual cells from the nerstian distribution of cationic dyes. Biophys J 1988; 53: 785–794.

    CAS  PubMed  Google Scholar 

  57. Huser J, Rechenmacher CE, Blatter LA. Imaging the permeability pore transition in single mitochondria. Biophys J 1998; 74: 2129–2137.

    CAS  PubMed  Google Scholar 

  58. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312–1316.

    Article  CAS  PubMed  Google Scholar 

  59. Jänicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA-fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998; 273: 9357–9360.

    PubMed  Google Scholar 

  60. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309–1312.

    CAS  PubMed  Google Scholar 

  61. Kandouz M, Siromachkova M, Jacob D, Marquet C, Therwath A, Gompel A. Antagonism between estradiol & progestin on bcl-2 expression in breast cancer cells. Int J Cancer 1996; 68: 120–125.

    Article  CAS  PubMed  Google Scholar 

  62. Kandouz M, Lombet A, Perrot JY, et al. Proapoptotic effects of antiestrogens, progestines and androgen in breast cancer cells. J Steroid Biochem Mol Biol 1999; 69: 463–471.

    Article  CAS  PubMed  Google Scholar 

  63. Gompel A, Somaï S, Chaouat M, et al. Hormonal regulation of apoptosis in breast cells. Steroids 2000; 65: 593–598.

    Article  CAS  PubMed  Google Scholar 

  64. Swiatecka J, Dzieciol J, Anchim T, Dabrowska M, Pietruczuk M, Wolczynski S. Influence of estrogen, antiestrogen and UV-light on the balance between proliferation and apoptosis in MCF-7 breast adenocarcinoma cells culture. Neoplasma 2000; 47: 15–24.

    CAS  PubMed  Google Scholar 

  65. Somaï S, Chaouat M, Jacob D, et al. Antiestrogens are pro-apoptotic in normal human breast epithelial cells. Int J Cancer 2003; 105: 607–612.

    PubMed  Google Scholar 

  66. Zapata JM, Krajewska M, Krajewski S, et al. Expression of multiple apoptosis-regulatory genes in human breast cancer cell lines and primary tumors. Breast Cancer Res Treat1998; 47: 129–140.

    Article  CAS  PubMed  Google Scholar 

  67. Jänicke RU, Engels IH, Dunkern T, et al. Ionizing radiation but not anticancer drugs causes cell cycle arrest and failure to activate the mitochondrial death pathway in MCF-7 breast carcinoma cells. Oncogene 2001; 20: 5043–5053.

    PubMed  Google Scholar 

  68. Obrero M, Yu DV, Shapiro DJ. Estrogen receptor-dependent and estrogen recptor -independent pathways for tamoxifen and 4-hydroxytamoxifen-induced programmed cell death. J Biol Chem 2002; 277: 45695–45703.

    Article  CAS  PubMed  Google Scholar 

  69. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000; 1: 120–129.

    Article  CAS  PubMed  Google Scholar 

  70. Razandi M, Pedram A, Park ST, Levin ER. Proximal events in signaling by plasma membrane estrogen receptors. J Biol Chem 2003; 278: 2701–2712.

    Article  CAS  PubMed  Google Scholar 

  71. Vladusic E, Hornby A, Guerra-Vladusic F, Lupu R. Expression of estrogen receptor beta messenger RNA variant in breast cancer. Cancer Res 1998; 58: 210–214.

    CAS  PubMed  Google Scholar 

  72. Peyrade F, Frenay M, Etienne MC, et al. Age-related difference in tamoxifen disposition. Clin Pharmacol Ther 1996; 59: 401–410.

    Article  CAS  PubMed  Google Scholar 

  73. Kisanga ER, Gjerde J, Guerreri-Gonzaga A, et al. Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial. Clin Cancer Res 2004; 10: 2336–2343.

    CAS  PubMed  Google Scholar 

  74. Hui A-M, Zhang W, Chen W, et al. Agents with selective estrogen receptor (ER) modulator activity induce apoptosis in vitro and in vivo in ER-negative glioma cells. Cancer Res 2004; 64: 9115–9123.

    Article  CAS  PubMed  Google Scholar 

  75. Cuzick J, Forbes J, Edwards R. First results from the International Breast Cancer Intervention Study (IBIS-1): A randomized prevention trial. Lancet 2002; 360: 817–824.

    CAS  PubMed  Google Scholar 

  76. Eguchi H, Suga K, Saji H, et al. Different expression patterns of Bcl-2 family genes in breast cancer by estrogen receptor status with special reference to pro-apoptotic Bak gene. Cell Death Differ 2000; 7: 439–446.

    Article  CAS  PubMed  Google Scholar 

  77. Mathiasen I, Jäättelä M. Triggering caspase-independent cell death to combat cancer. Trends in Mol Med 2002; 8: 212–220.

    CAS  Google Scholar 

  78. Lebedeva I, Sarkar D, Su Z, et al. Bcl-2 and Bcl-XL differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene 2003; 22: 8758–8773.

    Article  CAS  PubMed  Google Scholar 

  79. Yang C, Lin H, Chen C, et al. Bcl-XL mediates a survival mechanism independent of the phosphoinositide 3-kinase7Akt pathway in prostate cancer cells. J Biol Chem 2003; 28: 25872–25878.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kallio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallio, A., Zheng, A., Dahllund, J. et al. Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis 10, 1395–1410 (2005). https://doi.org/10.1007/s10495-005-2137-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-2137-z

Keywords

Navigation