Skip to main content
Log in

Effect of ozone on spore germination, spore production and biomass production in two Aspergillus species

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The ability of ozone gas to reduce food spoilage is relatively well documented, but the developmental effects of the gas on food spoilage fungi are not well known. In this study two model aspergilli, Aspergillus nidulans and Aspergillus ochraceus were used to study the effects of ozone on spore germination, sporulation and biomass production. These effects were examined under three levels of ozone; two high level ozone exposures (200 and 300 μmol mol−1) and one low level exposure (0.2 μmol mol−1). The two species behaved noticeably different to each other. Ozone was more effective in reducing growth from spore inocula than mycelia. No spore production could be detected in A. nidulans exposed to continuous low level O3, whereas the same treatment reduced spores produced in A. ochraceus by 94%. Overall the work suggests that ozone exposure is an effective method to prevent spread of fungal spores in a food storage situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams MR, Moss MO (2008) Micro-organisms and food materials, food microbiology. Royal Society of Chemistry, pp 6–20

  • Adams TH, Boylan MT, Timberlake WE (1988) brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353–362

    Article  CAS  PubMed  Google Scholar 

  • Aguirre J, Hansberg W, Navarro R (2006) Fungal responses to reactive oxygen species. Med Mycol 44:101–107

    Article  Google Scholar 

  • Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS (2005) Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 109:150–158

    Article  CAS  PubMed  Google Scholar 

  • Bai Z, Harvey LM, McNeil B (2003) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302

    Article  CAS  PubMed  Google Scholar 

  • Barth MM, Zhou CEN, Mercier J, Payne FA (1995) Ozone storage effects on anthocyanin content and fungal growth in blackberries. J Food Sci 60:1286–1288

    Article  CAS  Google Scholar 

  • Castagna A, Ederli L, Pasqualini S, Mensuali-Sodi A, Baldan B, Donnini S, Ranieri A (2007) The tomato ethylene receptor LE-ETR3 (NR) is not involved in mediating ozone sensitivity: causal relationships among ethylene emission, oxidative burst and tissue damage. New Phytol 174:342–356

    Article  CAS  PubMed  Google Scholar 

  • Eaton DL, Gallagher EP (1994) Mechanisms of aflatoxin carcinogenesis. Ann Rev Pharmacol 34:135–172

    Article  CAS  Google Scholar 

  • Eckert JW, Ogawa JM (1988) The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Ann Rev Phytopathol 26:433–469

    Article  CAS  Google Scholar 

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33

    Article  CAS  PubMed  Google Scholar 

  • Eom YS (1994) Pesticide residue risk and food safety valuation: a random utility approach. Am J Agr Econ 76:760–771

    Article  Google Scholar 

  • Ferrer A, Cabral R (1995) Recent epidemics of poisoning by pesticides. Toxicol Lett 82:55–63

    Article  PubMed  Google Scholar 

  • Filtenborg O, Frisvad JC, Thrane U (1996) Moulds in food spoilage. Int Journal Food Microbiol 33:85–102

    Article  CAS  Google Scholar 

  • Graham D (1997) Use of ozone for food processing. Food Technol (Chicago) 51:72–73

    Google Scholar 

  • Habibi Najafi MB, Haddad Khodaparast MH (2009) Efficacy of ozone to reduce microbial populations in date fruits. Food Control 20:27–30

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Oxygen is a toxic gas - an introduction to oxygen toxicity and reactive oxygen species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, New York, pp 1–35

    Google Scholar 

  • Harding PR Jr (1968) Effect of ozone on Penicillium mold decay and sporulation. Plant Dis 52:245–247

    Google Scholar 

  • Inan F, Pala M, Doymaz I (2007) Use of ozone in detoxification of aflatoxin B1 in red pepper. J Stored Prod Res 43:425–428

    Article  CAS  Google Scholar 

  • Jeyaratnam J (1990) Acute pesticide poisoning: a major global health problem. World Health Statist Q 43:139–144

    CAS  Google Scholar 

  • Kamei K, Watanabe A (2005) Aspergillus mycotoxins and their effect on the host. Med Mycol 43:95–99

    Article  Google Scholar 

  • Karaca H, Velioglu YS (2007) Ozone applications in fruit and vegetable processing. Food Rev Int 23:91–106

    Article  CAS  Google Scholar 

  • Keutgen AJ, Pawelzik E (2008) Influence of pre-harvest ozone exposure on quality of strawberry fruit under simulated retail conditions. Postharvest Biol Tec 49:10–18

    Article  CAS  Google Scholar 

  • Khadre MA, Yousef AE (2001) Sporicidal action of ozone and hydrogen peroxide: a comparative study. Int J Food Microbiol 71:131–138

    Article  CAS  PubMed  Google Scholar 

  • Korzun W, Hall J, Sauer R (2008) The effect of ozone on common environmental fungi. Clin Lab Sci 21:107–111

    PubMed  Google Scholar 

  • Liew CL, Prange RK (1994) Effect of ozone and storage temperature on postharvest diseases and physiology of carrots (Daucus carota L.). Am Soc Hortic Sci 119:563–567

    CAS  Google Scholar 

  • Marshall MA, Timberlake WE (1991) Aspergillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol 11:55–62

    CAS  PubMed  Google Scholar 

  • Nasreddine L, Parent-Massin D (2002) Food contamination by metals and pesticides in the European Union. Should we worry? Toxicol Lett 127:29–41

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JO, Caddick MX, Dobson ADC (2003) A polyketide synthase gene required for ochratoxin A biosynthesis in Aspergillus ochraceus. Microbiology 149:3485–3491

    Article  PubMed  Google Scholar 

  • Ohta T, Park BJ, Aihara M, Noritoshi RI, Saito T, Sawada T, Takatori K (2006) Morphological significance of Cladosporium contaminants on materials and utensils in contact with food. Biocontrol Sci 11:55–60

    PubMed  Google Scholar 

  • Petzinger E, Ziegler K (2000) Ochratoxin A from a toxicological perspective. J Vet Pharmacol Ther 23:91–98

    Article  CAS  PubMed  Google Scholar 

  • Rice RG (2002) Century 21-pregnant with ozone. Ozone Sci Eng 24:1–15

    Article  CAS  Google Scholar 

  • Rickloff JR (1987) An evaluation of the sporicidal activity of ozone. Appl Environ Microbiol 53:683–686

    CAS  PubMed  Google Scholar 

  • Sarig P, Zahavi T, Zutkhi Y, Yannai S, Lisker N, Ben-Arie R (1996) Ozone for control of post-harvest decay of table grapes caused by Rhizopus stolonifer. Physiol Mol Plant Pathol 48:403–415

    Article  CAS  Google Scholar 

  • Schafer KS, Kegley SE (2002) Persistent toxic chemicals in the US food supply. Br Med J 56:813

    CAS  Google Scholar 

  • Selma MV, Ibáñez AM, Cantwell M, Suslow T (2008) Reduction by gaseous ozone of Salmonella and microbial flora associated with fresh-cut cantaloupe. Food Microbiol 25:558–565

    Article  CAS  PubMed  Google Scholar 

  • Spotts RA, Peters BB (1980) Chlorine and chlorine dioxide for control of d’Anjou pear decay. Plant Dis 64:1095–1097

    CAS  Google Scholar 

  • Staats M, van Baarlen P, van Kan JAL (2005) Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22:333–346

    Article  CAS  PubMed  Google Scholar 

  • Sweeney MJ, Dobson ADW (1998) Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 43:141–158

    Article  CAS  PubMed  Google Scholar 

  • Thaxton JP, Tung HT, Hamilton PB (1974) Immunosuppression in chickens by aflatoxin. Poult Sci 53:721–725

    CAS  PubMed  Google Scholar 

  • Timberlake WE, Barnard EC (1981) Organization of a gene cluster expressed specifically in the asexual spores of A. nidulans. Cell 26:29–37

    Article  CAS  PubMed  Google Scholar 

  • Tzortzakis N, Borland A, Singleton I, Barnes J (2007a) Impact of atmospheric ozone-enrichment on quality-related attributes of tomato fruit. Postharvest Biol Tec 45:317–325

    Article  CAS  Google Scholar 

  • Tzortzakis N, Singleton I, Barnes J (2007b) Deployment of low-level ozone-enrichment for the preservation of chilled fresh produce. Postharvest Biol Tec 43:261–270

    Article  CAS  Google Scholar 

  • Tzortzakis N, Singleton I, Barnes J (2008) Impact of low-level atmospheric ozone-enrichment on black spot and anthracnose rot of tomato fruit. Postharvest Biol Tec 47:1–9

    Article  CAS  Google Scholar 

  • Vigneault C, Artés-Hernández F (2007) Gas treatments for increasing the phytochemical content of fruits and vegetables. Stewart Postharvest Rev 3:1–9

    Google Scholar 

  • Wilson JS, Otsuki T (2004) To spray or not to spray: pesticides, banana exports, and food safety. Food Policy 29:131–146

    Article  Google Scholar 

  • Wongwicharn A, McNeil B, Harvey LM (1999) Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnol Bioeng 65:416–424

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Panepinto JC, Fortwendel JR, Fox L, Oliver BG, Askew DS, Rhodes JC (2006) Deletion of the regulatory subunit of protein kinase A in Aspergillus fumigatus alters morphology, sensitivity to oxidative damage, and virulence. Infect Immun 74:4865–4874

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. J. D. Barnes, Newcastle University for providing assistance and access to the ozone fumigation facility used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Antony-Babu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antony-Babu, S., Singleton, I. Effect of ozone on spore germination, spore production and biomass production in two Aspergillus species. Antonie van Leeuwenhoek 96, 413–422 (2009). https://doi.org/10.1007/s10482-009-9355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9355-2

Keywords

Navigation