Skip to main content
Log in

Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Proteome and transcriptome analysis, combined with mutagenesis, were used to better understand the response of Cupriavidus metallidurans CH34 against lead(II). Structural Pb(II)-resistance genes of the pMOL30-encoded pbrUTRABCD operon formed the major line of defense against Pb(II). However, several general stress response mechanisms under the control of alternative sigma factors such as σ24/rpoK, σ32/rpoH and σ28/fliA were also induced. In addition, the expression of the pbrR 2 cadA pbrC 2 operon of the CMGI-1 region and the chromosomally encoded zntA were clearly induced in the presence of Pb(II), although their respective gene products were not detected via proteomics. After inactivation of the pbrA, pbrB or pbrD genes, the expression of the pbrR 2 cadA pbrC 2 operon went up considerably. This points towards synergistic interactions between pbrUTRABCD and pbrR 2 cadA pbrC 2 to maintain a low intracellular Pb(II) concentration, where pbrR 2 cadA pbrC 2 gene functions can complement and compensate for the mutations in the pbrA and pbrD genes. This role of zntA and cadA to complement for the loss of pbrA was further confirmed by mutation analysis. The pbrB∷Tn(Km2) mutation resulted in the most significant decrease of Pb(II) resistance, indicating that Pb(II) sequestration, avoiding re-entry of this toxic metal ion, forms a critical step in the pbr-encoded Pb(II) resistance mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Ayub ND, Pettinari MJ, Ruiz JA, Lopez NI (2004) A polyhydroxybutyrate-producing Pseudomonas sp. isolated from antarctic environments with high stress resistance. Curr Microbiol 49:170–174

    Article  PubMed  CAS  Google Scholar 

  • Berg JM, Godwin HA (1997) Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct 26:357–371

    Article  PubMed  CAS  Google Scholar 

  • Borremans B, Hobman JL, Provoost A, Brown NL, van der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658

    Article  PubMed  CAS  Google Scholar 

  • Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31:893–902

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He CA (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem Int Ed 44:2715–2719

    Article  CAS  Google Scholar 

  • Chen PR, Wasinger EC, Zhao J, van der Lelie D, Chen LX, He C (2007) Spectroscopic insights into lead(II) coordination by the selective lead(II)-binding protein PbrR691. J Am Chem Soc 129:12350–12351

    Article  PubMed  CAS  Google Scholar 

  • Claudio ES, Godwin HA, Magyar JS (2003) Fundamental coordination chemistry, environmental chemistry, and biochemistry of lead(II). Prog Inorg Chem 51:1–144

    CAS  Google Scholar 

  • Diels L, Sadouk A, Mergeay M (1989) Large plasmids governing multiple resistance to heavy metals: a genetic approach. Toxicol Environ Chem 23:79–89

    Article  CAS  Google Scholar 

  • Grosse C, Friedrich S, Nies DH (2007) Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34. J Mol Microbiol Biotechnol 12:227–240

    Article  PubMed  CAS  Google Scholar 

  • Legatzki A, Grass G, Anton A, Rensing C, Nies DH (2003) Interplay of the czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185:4354–4361

    Article  PubMed  CAS  Google Scholar 

  • Levinson HS, Mahler I (1998) Phosphatase activity and lead resistance in Citrobacter freundii and Staphylococcus aureus. FEMS Microbiol Lett 161:135–138

    Article  PubMed  CAS  Google Scholar 

  • Lewis JA, Cohen SM (2004) Addressing lead toxicity: complexation of lead(II) with thiopyrone and hydroxypyridinethione O,S mixed chelators. Inorg Chem 43:6534–6536

    Article  PubMed  CAS  Google Scholar 

  • Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA

    Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Vangijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    Article  PubMed  CAS  Google Scholar 

  • Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der Lelie D, Vallaeys T (2006a) Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152:1765–1776

    Article  PubMed  CAS  Google Scholar 

  • Monchy S, Vallaeys T, Bossus A, Mergeay M (2006b) Metal transport ATPase genes from Cupriavidus metallidurans CH34: a transcriptomic approach. Int J Environ Anal Chem 86:677–692

    Article  CAS  Google Scholar 

  • Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF (1997) An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci 6:1764–1767

    Article  PubMed  CAS  Google Scholar 

  • Noel-Georis I, Vallaeys T, Chauvaux R, Monchy S, Falmagne P, Mergeay M, Wattiez R (2004) Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4:151–179

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325

    Article  PubMed  CAS  Google Scholar 

  • Rensing C, Mitra B, Rosen BP (1998a) A Zn(II)-translocating P-type ATPase from Proteus mirabilis. Biochem Cell Biol 76:787–790

    Article  PubMed  CAS  Google Scholar 

  • Rensing C, Sun Y, Mitra B, Rosen BP (1998b) Pb(II)-translocating P-type ATPases. J Biol Chem 273:32614–32617

    Article  PubMed  CAS  Google Scholar 

  • Roane TM (1999) Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microb Ecol 37:218–224

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Shimoni-Livny L, Glusker JP, Bock CW (1998) Lone pair functionality in divalent lead compounds. Inorg Chem 37:1853–1867

    Article  CAS  Google Scholar 

  • Taghavi S, van der Lelie D, Mergeay M (1994) Electroporation of Alcaligenes eutrophus with (mega) plasmids and genomic DNA fragments. Appl Environ Microbiol 60:3585–3591

    PubMed  CAS  Google Scholar 

  • Trajanovska S, Britz ML, Bhave M (1997) Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8:113–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work by D. v. d. L., S. T. and C. L. was supported by Laboratory Directed Research and Development funds at the Brookhaven National Laboratory under contract with the U.S. Department of Energy. S. M. and M. M. were funded by SCK·CEN. R. W. is a Research Associate at the National Funds for Scientific Research (Belgium). The skilful technical assistance of Bill Greenberg is gratefully acknowledged. We are grateful to Dietrich Nies for providing us with the strains DN438, DN439 and DN440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel van der Lelie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taghavi, S., Lesaulnier, C., Monchy, S. et al. Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie van Leeuwenhoek 96, 171–182 (2009). https://doi.org/10.1007/s10482-008-9289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-008-9289-0

Keywords

Navigation