Skip to main content
Log in

Microbial diversity in natural environments: focusing on fundamental questions

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Interactions with Gijs Kuenen and other Dutch scientists have led my lab to fundamental insights into the composition, structure and function of a hot spring cyanobacterial mat community that should influence our thinking about all microbial communities. By focusing on the distribution of molecular sequence variants of predominant mat phototrophs, we have discovered that small-scale sequence variation can be ecologically meaningful. By applying novel cultivation approaches, we have been able to obtain genetically relevant community members and thus to test the hypothesis that closely related sequence variants arose via adaptive evolutionary radiation. By applying the analytical tools of organic geochemistry we have gained insight into the metabolisms of major phototrophic members of the mat community as well as interactions between phototrophic guilds. These observations challenge traditional paradigms about prokaryotic species and cause us to consider evolutionary ecology theory as we develop genome-based methods for high-resolution analysis of the species-like fundamental units comprising microbial communities, and for investigating how such units coordinate the physiological activities within guilds of the community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GNSB:

green nonsulfur or nonsulfur-like bacteria

DGGE:

denaturing gradient gel electrophoresis

References

  • Allewalt JA, Bateson MM, Revsbech NP, Slack K, Ward DM (2006) Temperature and light adaptations of Synechococcus isolates from the microbial mat community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 72:544–550

    Article  PubMed  CAS  Google Scholar 

  • Anderson KL, Tayne TA, Ward DM (1987) Formation and fate of fermentation products in hot spring cyanobacterial mats. Appl Environ Microbiol 53:2343–2352

    PubMed  CAS  Google Scholar 

  • Bateson MM, Ward DM. (1988) Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54:1738–1743

    PubMed  CAS  Google Scholar 

  • Bauld J, Brock TD (1973) Ecological studies of Chloroflexis, a gliding photosynthetic bacterium. Arch Microbiol 92:267–284

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities, 2nd edn. Blackwell Scientific Publications, Cambridge, MA

    Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer-Verlag, New York

    Google Scholar 

  • Cohan FM (2002) What are bacterial species? Ann Rev Microbiol 56:457–487

    Article  CAS  Google Scholar 

  • de Bruyn J, Boogerd FC, Bos P, Kuenen JG (1990) Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl Environ Microbiol 56:2891–2894

    PubMed  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996a) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    CAS  Google Scholar 

  • Ferris MJ, Ruff-Roberts AL, Kopczynski ED, Bateson MM, Ward DM (1996b) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol 62:1045–1050

    CAS  Google Scholar 

  • Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381

    PubMed  CAS  Google Scholar 

  • Ferris MJ, Kühl M, Wieland A, Ward DM (2003) Different light-adapted ecotypes in a 68°C Synechococcus mat community revealed by analysis of 16S-23S intervening transcribed spacer variation. Appl Environ Microbiol 69:2893–2898

    Article  PubMed  CAS  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E., van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Reevaluating prokaryotic species. Nature Rev Microbiol 3:1–7

    Google Scholar 

  • Goodfellow M, Manfio GP, Chun J (1997) Towards a practical species concept for cultivable bacteria. In: Claridge MF, Dawah HA, Wison MR (eds) Species: the units of biodiversity. Chapman and Hall, London, pp 25–59

    Google Scholar 

  • Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium which lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193

    Article  PubMed  CAS  Google Scholar 

  • Herter S, Fuchs G, Bacher A, Eisenreich W (2002) A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. J Biol Chem 277:20277–20283

    Article  PubMed  CAS  Google Scholar 

  • Holo H, Sirevåg R (1986) Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus. Arch Microbiol 145:173–180

    Article  CAS  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Google Scholar 

  • Kallas T, Castenholz RW (1982) Rapid transient growth at low pH in the cyanobacterium Synechococcus sp. J Bacteriol 149:237–246

    PubMed  CAS  Google Scholar 

  • Mayr E (1982) The growth of biological thought: diversity, evolution and inheritance. Harvard Univ. Press, Cambridge, MA

    Google Scholar 

  • Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Castenholz RW (1971) Growth and photosynthesis in an extreme thermophile, Synechococcus lividus (cyanophyta). Arch Mikrobiol 78:25–41

    Article  PubMed  CAS  Google Scholar 

  • Miller SR, Castenholz RW (2000) Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Appl Environ Microbiol 66:4222–4229

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nold SC, Ward DM (1996) Photosynthate partitioning and fermentation in hot spring microbial mat communities. Appl Environ Microbiol 62:4598–4607

    PubMed  CAS  Google Scholar 

  • Nübel U, Bateson MM, Vandieken V, Wieland A, Kühl M, Ward DM (2002) Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats. Appl Environ Microbiol 68:4593–4603

    Article  PubMed  CAS  Google Scholar 

  • Nübel U, Garcia-Pichel F, Clavero E, Muyzer G (2000) Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2:217–226

    Article  PubMed  Google Scholar 

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    Article  PubMed  CAS  Google Scholar 

  • Ramsing NB, Ferris MJ, Ward DM (2000) Highly ordered vertical structure of Synechococcus populations within the one-millimeter thick photic zone of a hot spring cyanobacterial mat Appl Environ Microbiol 66:1038–1049

    Article  PubMed  CAS  Google Scholar 

  • Revsbech NP, Ward DM (1984) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48:270–275

    PubMed  CAS  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Ruff-Roberts AL, Kuenen JG, Ward DM (1994) Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 60:697–704

    PubMed  CAS  Google Scholar 

  • Sandbeck KA, Ward DM (1981) Fate of immediate methane precursors in low sulfate hot spring algal-bacterial mats. Appl Environ Microbiol 41:775–782

    PubMed  CAS  Google Scholar 

  • Santegoeds CM, Nold SC, Ward DM (1996) Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl Environ Microbiol 62:3922–3928

    PubMed  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stewart WDP (1970) Nitrogen fixation by blue-green algae in Yellowstone thermal areas. Phycologia 9:261–268

    CAS  Google Scholar 

  • Steunou A-S, Bhaya D, Bateson M, Melendrez M, Ward DM, Brecht E, Peters JW, Kühl M, Grossman A (2006) In Situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci USA 103:2398–2403

    Article  PubMed  CAS  Google Scholar 

  • van der Meer MTJ, Schouten S, Ward DM, Geenevasen JAJ, Sinninghe Damsté JS (1999) All-cis hentriaconta-9,15,22-triene in microbial mats formed by the phototrophic prokaryote Chloroflexus. Org Geochem 30:1585–1587

    Article  PubMed  Google Scholar 

  • van der Meer MTJ, Schouten S, de Leeuw JW, Ward DM (2000) Autotrophy of green non-sulphur bacteria in hot spring microbial mats: biological explanations for isotopically heavy organic carbon in the geological record. Environ Microbiol 2:428–435

    Article  PubMed  Google Scholar 

  • van der Meer MTJ, Schouten S, Hanada S, Hopmans EC, Sinninghe Damsté JS, Ward DM (2002) Alkane-1,2-diol-based glycosides and fatty glycosides and wax esters in Roseiflexus castenholzii and hot spring microbial mats. Arch Microbiol 178:229–237

    Article  CAS  Google Scholar 

  • van der Meer MTJ, Schouten S, Sinninghe Damsté JS, de Leeuw JW, Ward DM (2003) Compound specific isotopic fractionation patterns suggest different carbon metabolisms among Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 69:6000–6006

    Article  PubMed  CAS  Google Scholar 

  • van der Meer MTJ, Schouten S, van Dongen BE, Rijpstra WIC, Fuchs G, Sinninghe Damsté JS, de Leeuw JW, Ward DM (2001) Biosynthetic controls on the 13C-contents of organic components in the photoautotrophic bacterium Chloroflexus aurantiacus. J Biol Chem 276:10971–10976

    Article  PubMed  Google Scholar 

  • van der Meer MTJ, Schouten S., Bateson MM, Nübel U, Wieland A, Kühl M, De Leeuw JW, Sinninghe Damsté JS, Ward DM (2005) Diel variations in carbon metabolisms of green nonsulfur-like bacteria in alkaline silicious hot spring microbial mats from Yellowstone National Park, USA. Appl Env Microbiol 71:3978–3986

    Article  CAS  Google Scholar 

  • van Dongen BE, Schouten S, Sinninghe Damsté JS (2001) Gas chromatography/combustion/isotope-ratio-monitoring mass spectrometric analysis of methylboronic derivatives of monosaccharides: a new method for determining natural 13C abundances of carbohydrates. Rapid Commun Mass Spectrom 15:496–500

    Article  PubMed  Google Scholar 

  • van Iterson G Jr, den Dooren de Jong LE, Kluyver AJ (1940) Verzamelde Geschriften van MW Beijerinck. Zesde Deel, Martinus Nijhoff, s’Granenhage, NL

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO (2004) Environmental shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • Ward DM (1998) A natural species concept for prokaryotes. Curr Opin Microbiol 1:271–277

    Article  PubMed  CAS  Google Scholar 

  • Ward DM (2006) A macrobiological perspective on microbial species. Microbe (in press)

  • Ward DM, Bateson MM, Ferris MJ, Nold SC (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    PubMed  CAS  Google Scholar 

  • Ward DM, Bateson MM, Weller R, Ruff-Roberts AL (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microbial Ecol 12:219–286

    CAS  Google Scholar 

  • Ward DM, Castenholz RW (2000) Cyanobacteria in geothermal habitats. In: Potts M, Whitton B (eds) Ecology of Cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp 37–59

    Google Scholar 

  • Ward DM, Cohan FM (2005) Microbial diversity in hot spring cyanobacterial mats: pattern and prediction.In: Inskeep WP, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park. Montana State University Thermal Biology Inst., Bozeman, MT, pp 185–202

  • Ward DM, Papke RT, Nübel U, McKitrick MC (2002) Natural history of microorganisms inhabiting hot spring microbial mat communities: clues to the origin of microbial diversity and implications for micro- and macro-biology. In: Staley JT, Reysenbach A-L (eds) Biodiversity of microbial life: foundation of earth’s biosphere. John Wiley and Sons, NY, pp 25–48

    Google Scholar 

  • Ward DM, Santegoeds CM, Nold SC, Ramsing NB, Ferris MJ, Bateson MM (1997) Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures. Antonie van Leeuwenhoek 71:143–150

    Article  PubMed  CAS  Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 344:63–65

    Article  Google Scholar 

  • Wickstrom CE (1980) Distribution and physiological determinants of blue-breen algal nitrogen fixation along a thermogradient. J Phycol 16:436–443

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am very grateful to Jerry Ensign (University of Wisconsin-Madison) for teaching me microbiology in the tradition of the Delft School of Microbiology in his graduate class on Microbial Diversity. I thank Tony Scotti for providing Fig. 4B, Marcel van der Meer for providing Figs. 6B and C and Fred Cohan for providing the concept for Fig. 8. I appreciate the long term support of the U.S. National Science Foundation (Ecology and Frontiers in Integrative Biology Research programs), the U.S. National Aeronautics and Space Administration (Exobiology and Astrobiology programs), the Montana State University Thermal Biology Institute and the Rotary Foundation of Rotary International, who supported Sjila Santegoeds’ visit to my lab. I also appreciate the support of the U.S. National Park Service for permission to collect in Yellowstone National Park and for invaluable assistance over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, D.M. Microbial diversity in natural environments: focusing on fundamental questions. Antonie van Leeuwenhoek 90, 309–324 (2006). https://doi.org/10.1007/s10482-006-9090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9090-x

Keywords

Navigation