Skip to main content

Advertisement

Log in

Carbon, nitrogen and organic C fractions in topsoil affected by conversion from silvopastoral to different land use systems

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The conversion of silvopasture to different land use systems cause effective changes in soil carbon distribution, due to disturbances in soil aggregation promoted by soil management and changes in crop residues inputs and decomposability. We evaluate the C and N stocks, and organic C fractions in soils under continuous arable land (AR) and silvopasture with apple trees and grass (SP); and after 4 years of conversion from silvopasture to arable land (SP-AR) and grassland (SP-GL). Total N (TN) and organic C (TOC), as well as microbial biomass carbon (CMB), light fraction (CLF) and heavy fraction (CHF) were evaluated at two different depths (0–10 and 10–20 cm). After 4 years of conversion, SP-AR and SP-GL presented C and N stocks similar to the observed for SP when the 0–20 cm depth was considered. However, AR presented TOC and TN stocks around 21 and 10% lower than SP, respectively. SP-AR tended to present the lowest CMB stocks and was positively correlated with salt extractable organic C (r 2 = 0.60, P < 0.001). CLF values declined by 62% from 0–10 to the 10–20 cm at SP and SP-GL, however there was no variation with increasing depth for AR and SP-AR. CHF represented the highest C fraction in soil, corresponding to 82% of TOC. Except for AR, δ13C values of the light fraction increased with increasing depth. In general, heavy fraction tended to be more enriched in δ13C than light fraction. In a long-term, conventional tillage can significantly contribute to reduce TOC and TN stocks when compared to the silvopastoral system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Accoe F, Boeckx P, Van Cleemput O, Hofman G, Zhang Y, Li R, Guanxiong C (2002) Evolution of the δ13C signature related to total carbon contents and carbon decomposition rate constants in a soil profile under grassland. Rapid Commun Mass Spectrom 16:2184–2189. doi:10.1002/rcm.767

    Article  CAS  PubMed  Google Scholar 

  • Apezteguía HP, Izaurralde RC, Sereno R (2009) Simulation study of soil organic matter dynamics as affected by land use and agricultural practices in semiarid Córdoba, Argentina. Soil Till Res 102:101–108. doi:10.1016/j.still.2008.07.016

    Article  Google Scholar 

  • Balesdent J, Mariotti A (1996) Measurement of soil organic matter turnover using 13C natural abundance. In: Boutton TW, Yamasaki S (eds) Mass spectrometry of soils. Marcel Dekker, New York, pp 83–111

    Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163. doi:10.1111/j.1365-2389.1996.tb01386.x

    Article  CAS  Google Scholar 

  • Bernoux M, Cerri CC, Neill C, Moraes JFL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43–58. doi:10.1016/S0016-7061(97)00096-7

    Article  Google Scholar 

  • Billen N, Röder C, Gaiser T, Stahr K (2009) Carbon sequestration in soils of SW-Germany as affected by agricultural management—calibration of the EPIC model for regional simulations. Ecol Model 220:71–80. doi:10.1016/j.ecolmodel.2008.08.015

    Article  Google Scholar 

  • Chen H, Marhan S, Billen N, Stahr K (2009) Soil organic-carbon and total nitrogen stocks as affected by different land uses in Baden-Württemberg (southwest Germany). J Plant Nutr Soil Sci 172:32–42. doi:10.1002/jpln.200700116

    Article  CAS  Google Scholar 

  • Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: Effects on soil carbon. Ecol Appl 11:343–355. doi:10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2

    Article  Google Scholar 

  • Diels J, Vanlauwe B, Van der Meersch MK, Sanginga N, Merckx R (2004) Long-term soil organic carbon dynamics in a subhumid tropical climate: 13C data in mixed C3/C4 cropping and modeling with ROTHC. Soil Biol Biochem 36:1739–1750. doi:10.1016/j.soilbio.2004.04.031

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Stuedemann JA, Schomberg HH, Wilkinson SR (2000) Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA. Soil Biol Biochem 32:469–478. doi:10.1016/S0038-0717(99)00176-5

    Article  CAS  Google Scholar 

  • Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23. doi:10.1016/j.geoderma.2004.01.021

    Article  CAS  Google Scholar 

  • Funarbe (2007) SAEG-Sistema para análises estatísticas. Version 9.1. Federal University of Viçosa, Viçosa, Brazil. CD-ROM

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360. doi:10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797. doi:10.2134/jeq2007.0509

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Franchini JC, Brandão-Junior O, Kaschuk G, Souza RA (2009) Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Appl Soil Ecol 42:288–296. doi:10.1016/j.apsoil.2009.05.005

    Article  Google Scholar 

  • Islam KR, Weil RR (1998) Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biol Fert Soils 27:408–416. doi:10.1007/s003740050451

    Article  CAS  Google Scholar 

  • Leifeld J, Kögel-Knabner I (2005) Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma 124:143–155. doi:10.1016/j.geoderma.2004.04.009

    Article  CAS  Google Scholar 

  • Leite LFC, Mendonça ES, Machado PLOA, Matos ES (2003) Total C and N storage and organic C pools of a Red-Yellow Podzolic under conventional and no tillage at the Atlantic Forest Zone, south-eastern Brazil. Aust J Soil Res 41:717–730. doi:10.1071/SR02037

    Article  CAS  Google Scholar 

  • Llorente M, Turrión M (2009) Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur J Forest Res. doi:10.1007/s10342-008-0249-z

  • Lugato E, Berti A, Giardini L (2006) Soil organic carbon (SOC) dynamics with and without residue incorporation in relation to different nitrogen fertilisation rates. Geoderma 135:315–321. doi:10.1016/j.geoderma.2006.01.012

    Article  CAS  Google Scholar 

  • Maia S, Xavier F, Oliveira T, Mendonça E, Araújo Filho J (2007) Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil. Agroforest Syst 71:127–138. doi:10.1007/s10457-007-9063-8

    Article  Google Scholar 

  • Martens DA (2000) Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol Biochem 32:361–369. doi:10.1016/s0038-0717(99)00162-5

    Article  CAS  Google Scholar 

  • Mueller C, Koegel-Knabner I (2009) Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol Fert Soils 45:347–359. doi:10.1007/s00374-008-0336-9

    Article  CAS  Google Scholar 

  • Murage EW, Voroney P, Beyaert RP (2007) Turnover of carbon in the free light fraction with and without charcoal as determined using the 13C natural abundance method. Geoderma 138:133–143. doi:10.1016/j.geoderma.2006.11.002

    Article  CAS  Google Scholar 

  • Paustian K, Collins HP, Paul EA (1997) Management controls on soil carbon. In: Paul EA, Elliott ET, Paustian K, Cole CV (eds) Soil organic matter in temperate agroecosystems: long-term experiments in North America. CRC Press, Boca Raton, FL, pp 15–49

    Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327. doi:10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  • Roscoe R, Buurman P, Velthorst EJ, Vasconcellos CA (2001) Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado’s oxisol. Geoderma 104:185–202. doi:10.1016/S0016-7061(01)00080-5

    Article  CAS  Google Scholar 

  • Schroth G, D’Angelo SA, Teixeira WG, Haag D, Lieberei R (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. Forest Ecol Manag 163:131–150. doi:10.1016/s0378-1127(01)00537-0

    Article  Google Scholar 

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Z Pflanz Bodenkunde 105:194–202. doi:10.1002/jpln.3591050303

    Article  CAS  Google Scholar 

  • Sohi SP, Mahieu N, Arah JRM, Powlson DS, Madari B, Gaunt JL (2001) A procedure for isolating soil organic matter fractions suitable for modeling. Soil Sci Soc Am J 65:1121–1128

    Article  CAS  Google Scholar 

  • Sparling GP (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 97–112

    Google Scholar 

  • Sparling GP, West AW (1988) A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biol Biochem 20:337–343. doi:10.1016/0038-0717(88)90014-4

    Article  CAS  Google Scholar 

  • Wu T, Schoenau JJ, Li F, Qian P, Malhi SS, Shi Y (2003) Effect of tillage and rotation on organic carbon forms of chernozemic soils in Saskatchewan. J Plant Nutr Soil Sci 166:328–335. doi:10.1002/jpln.200390051

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the International Graduate School (IGS) program of the BTU-Cottbus. We thank E. Müller, G. Franke, R. Müller and H. Köller for technical assistance with laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo S. Matos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matos, E.S., Freese, D., Mendonça, E.S. et al. Carbon, nitrogen and organic C fractions in topsoil affected by conversion from silvopastoral to different land use systems. Agroforest Syst 81, 203–211 (2011). https://doi.org/10.1007/s10457-010-9314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-010-9314-y

Keywords

Navigation