Skip to main content

Advertisement

Log in

Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Patient-specific computational models could aid in planning interventions to relieve pulmonary arterial stenoses common in many forms of congenital heart disease. We describe a new approach to simulate blood flow in subject-specific models of the pulmonary arteries that consists of a numerical model of the proximal pulmonary arteries created from three-dimensional medical imaging data with terminal impedance boundary conditions derived from linear wave propagation theory applied to morphometric models of distal vessels. A tuning method, employing numerical solution methods for nonlinear systems of equations, was developed to modify the distal vasculature to match measured pressure and flow distribution data. One-dimensional blood flow equations were solved with a finite element method in image-based pulmonary arterial models using prescribed inlet flow and morphometry-based impedance at the outlets. Application of these methods in a pilot study of the effect of removal of unilateral pulmonary arterial stenosis induced in a pig showed good agreement with experimental measurements for flow redistribution and main pulmonary arterial pressure. Next, these methods were applied to a patient with repaired tetralogy of Fallot and predicted insignificant hemodynamic improvement with relief of the stenosis. This method of coupling image-based and morphometry-based models could enable increased fidelity in pulmonary hemodynamic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. Alderson P. O., Boonvisut S., McKnight R. C., Jr. Hartman A. F. (1976) Pulmonary perfusion abnormalities and ventilation-perfusion imbalance in children after total repair of tetralogy of Fallot. Circulation 53:332–337

    PubMed  CAS  Google Scholar 

  2. Beard D. A., Bassingthwaighte J. B. (2000) The fractal nature of myocardial blood flow emerges from a whole-organ model of arterial network. J. Vasc. Res. 37:282–296

    Article  PubMed  CAS  Google Scholar 

  3. Broyden C. G. (1965) A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19:577–593

    Article  Google Scholar 

  4. Burrowes K. S., Hunter P. J., Tawhai M. H. (2005) Anatomically-based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J. Appl. Physiol. 99:731–738

    Article  PubMed  Google Scholar 

  5. Dawson C.A., Linehan J.H. (1997) Dynamics of blood flow and pressure-flow relationship. In: Crystal R., J. West, P. Barnes, and E. Weibel (eds.) The Lung: Scientific Foundations. Philadelphia: Lippincott-Raven

    Google Scholar 

  6. Dowdle S. C., Human D. G., Mann M. D. (1990) Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot. J. Nucl. Med. 31:1276–1279

    PubMed  CAS  Google Scholar 

  7. Figueroa C. A., Vignon-Clementel I. E., Jansen K. E., Hughes T. J. R., Taylor C. A. (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706

    Article  Google Scholar 

  8. Frank O. (1920) Die elastizität der blutgefässe. Z. Biol. 71:255–272

    Google Scholar 

  9. Gan R. Z., Yen R. T. (1994) Vascular impedance analysis in dog lung with detailed morphometric and elasticity data. J. Appl. Physiol. 77:706–717

    PubMed  CAS  Google Scholar 

  10. Gao J., Huang W., Yen R. T. (2000) Microcirculation impedance analysis in cat lung. J. Biomech. Eng. 122:99–103

    Article  PubMed  CAS  Google Scholar 

  11. Glenny R. W., Robertson H. T. (1995) A computer simulation of pulmonary perfusion in three dimensions. J. Appl. Physiol. 79:357–369

    PubMed  CAS  Google Scholar 

  12. Grant B. J., Paradowski L. J. (1987) Characterization of pulmonary arterial input impedance with lumped parameter models. Am. J. Physiol. 252:H585–593

    PubMed  CAS  Google Scholar 

  13. Huang W., Tian Y., Gao J., Yen R.,T. (1998) Comparison of theory and experiment in pulsatile flow in cat lung. Ann. Biomed. Eng. 26:812–820

    Article  PubMed  CAS  Google Scholar 

  14. Huang W., Yen R. T., McLaurine M., Bledsoe G. (1996) Morphometry of the human pulmonary vasculature. J. Appl. Physiol. 81:2123–2133

    PubMed  CAS  Google Scholar 

  15. Hughes, T. J. R. A Study of the One-Dimensional Theory of Arterial Pulse Propagation. PhD Thesis, U C Berkeley, Berkeley, CA, 1974

  16. Hughes T. J. R., Lubliner J. (1973) On the one-dimensional theory of blood flow in the larger vessels. Math. Biosci. 18:161–170

    Article  Google Scholar 

  17. Ilbawi M. N., Idriss F. S., DeLeon S. Y., Muster A. J., Gidding S. S., Berry T. E., Paul M. H. (1987) Factors that exaggerate the deleterious effects of pulmonary insufficiency on the right ventricle after tetralogy repair. Surgical implications. J. Thorac. Cardiovasc. Surg. 93:36–44

    PubMed  CAS  Google Scholar 

  18. Kassab G. S., Berkley J., Fung Y. C. (1997) Analysis of pig’s coronary arterial blood flow with detailed anatomical data. Ann. Biomed. Eng. 25:204–217

    PubMed  CAS  Google Scholar 

  19. Kassab G. S., Rider C. A., Tang N. J., Fung Y. C. (1993) Morphometry of pig coronary arterial trees. Am. J. Physiol. 265:H350–365

    PubMed  CAS  Google Scholar 

  20. Krenz G. S., Linehan J. H., Dawson C. A. (1992) A fractal continuum model of the pulmonary arterial tree. J. Appl. Physiol. 72:2225–2237

    PubMed  CAS  Google Scholar 

  21. Laganà K., Balossino R., Migliavacca F., Pennati G., Bove E. L., de Leval M. R., Dubini G. (2005) Multiscale modeling of the cardiovascular system: Application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 38:1129–1141

    Article  PubMed  Google Scholar 

  22. Markl M., Chan F. P., Alley M. T., Wedding K. L., Draney M. T., Elkins C. J., Parker D. W., Wicker R., Taylor C. A., Herfkens R. J., Pelc N. J. (2003) Time-resolved three-dimensional phase-contrast MRI. J. Magn. Reson. Imaging. 17:499–506

    Article  PubMed  Google Scholar 

  23. McElhinney D. B., Parry A. J., Reddy V. M., Hanley F. L., Stanger P. (1998) Left pulmonary artery kinking caused by outflow tract dilatation after transannular patch repair of tetralogy of Fallot. Ann. Thorac. Surg. 65:1120–1126

    Article  PubMed  CAS  Google Scholar 

  24. Molthen R. C., Karau K. L., Dawson C. A. (2004) Quantitative models of the rat pulmonary arterial tree morphometry applied to hypoxia-induced arterial remodeling. J. Appl. Physiol. 97:2372–2384

    Article  PubMed  Google Scholar 

  25. Murgo J. P., Westerhof N. (1984) Input impedance of the pulmonary arterial system in normal man. Effects of respiration and comparison to systemic impedance. Circ. Res. 54:666–673

    PubMed  CAS  Google Scholar 

  26. Olufsen M. S. (1999) Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257–268

    PubMed  CAS  Google Scholar 

  27. Pries A. R., Secomb T. W. (2005) Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart. Circ. Physiol. 289:H2657–2664

    Article  PubMed  CAS  Google Scholar 

  28. Rhodes J., Dave A., Pulling M. C., Geggel R. L., Marx G. R., Fulton D. R., Hijazi Z. M. (1998) Effect of pulmonary artery stenoses on the cardiopulmonary response to exercise following repair of tetralogy of Fallot. Am. J. Cardiol. 81:1217–1219

    Article  PubMed  CAS  Google Scholar 

  29. Seeley B. D., Young D. F. (1976) Effect of geometry on pressure losses across models of arterial stenoses. J. Biomech. 9:439–448

    Article  PubMed  CAS  Google Scholar 

  30. Segers P., Stergiopulos N., Westerhof N., Wouters P., Kolh P., Verdonck P. (2003) Systematic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J. Eng. Math. 47:185–199

    Article  Google Scholar 

  31. Smith N. P., Pullan A. J., Hunter P. J. (2000) Generation of an anatomically based geometric coronary model. Ann. Biomed. Eng. 28:14–25

    Article  PubMed  CAS  Google Scholar 

  32. Smith N. P., Pullan A. J., Hunter P. J. (2002) An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62:990–1018

    Article  Google Scholar 

  33. Steele B. N., Olufsen M. S., Taylor C. A. (2007) Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput. Methods Biomech. Biomed. Eng.10:39–51

    Article  Google Scholar 

  34. Steele B. N., Wan J., Ku J. P., Hughes T. J. R., Taylor C. A. (2003) In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts. IEEE Trans. Biomed. Eng. 50:649–656

    Article  PubMed  Google Scholar 

  35. Taylor M. G. (1959) An experimental determination of the propagation of fluid oscillations in a tube with a visco-elastic wall; together with an analysis of the characteristics required in an electrical analogue. Phys. Med. Biol. 4:63–82

    Article  PubMed  CAS  Google Scholar 

  36. Taylor M. G. (1966) The input impedance of an assembly of randomly branching elastic tubes. Biophys. J. 6:29–51

    PubMed  CAS  Google Scholar 

  37. Taylor M. G. (1966) Wave transmission through an assembly of randomly branching elastic tubes. Biophys. J. 6:697–716

    Article  PubMed  CAS  Google Scholar 

  38. Taylor C. A., Draney M. T., Ku J. P., Parker D., Steele B. N., Wang K., Zarins C. K. (1999) Predictive medicine: Computational techniques in therapeutic decision-making. Comput. Aided Surg. 4:231–247

    Article  PubMed  CAS  Google Scholar 

  39. Tomassoni T. L., Galioto F. M. Jr., Vaccaro P. (1991) Cardiopulmonary exercise testing in children following surgery for tetralogy of Fallot. Am. J. Dis. Child. 145:1290–1293

    PubMed  CAS  Google Scholar 

  40. Vignon-Clementel I. E., Figueroa C. A., Jansen K. E., Taylor C. A. (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195:3776–3796

    Article  Google Scholar 

  41. Vignon I. E., Taylor C. A. (2004) Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries. Wave Motion 39:361–374

    Article  Google Scholar 

  42. Wan J., Steele B. N., Spicer S. A., Strohband S., Feijóo G. R., Hughes T. J. R., Taylor C. A. (2002) A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease. Comput. Methods Biomech. Biomed. Eng. 5:195–206

    Article  Google Scholar 

  43. Wang K.C., Dutton R.W., Taylor C.A. (1999) Level sets for vascular model construction in computational hemodynamics. IEEE Eng. Med. Biol. 18:33–39

    Article  CAS  Google Scholar 

  44. Wilson N. M., Wang K. C., Dutton R. W., Taylor C. A. (2001) A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect. Notes Comput. Sci. 2208:449–456

    Article  Google Scholar 

  45. Womersley J. R. (1957) Oscillatory flow in arteries: The constrained elastic tube as a model of arterial flow and pulse transmission. Phys. Med. Biol. 2:178–187

    Article  PubMed  CAS  Google Scholar 

  46. Zhuang F. Y., Fung Y. C., Yen R. T. (1983) Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data. J. Appl. Physiol. 55:1341–1348

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Mary T. Draney and the staff of the Richard M. Lucas Center for Magnetic Resonance Spectroscopy and Imaging for assistance with the porcine experiment. This work was supported by the Vera Moulton Wall Center for Pulmonary Vascular Disease and the National Science Foundation under Grant No. 0205741. Ryan Spilker was supported by the Benchmark Capital Fellowship in Congenital Cardiovascular Bioengineering at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spilker, R.L., Feinstein, J.A., Parker, D.W. et al. Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries. Ann Biomed Eng 35, 546–559 (2007). https://doi.org/10.1007/s10439-006-9240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9240-3

Keywords

Navigation