Skip to main content
Log in

Derivation of Centers and Axes of Rotation for Wrist and Fingers in a Hand Kinematic Model: Methods and Reliability Results

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In the field of 3D reconstruction of human motion from video, model-based techniques have been proposed to increase the estimation accuracy and the degree of automation. The feasibility of this approach is strictly connected with the adopted biomechanical model. Particularly, the representation of the kinematic chain and the assessment of the corresponding parameters play a relevant role for the success of the motion assessment. In this paper, the focus is on the determination of the kinematic parameters of a general hand skeleton model using surface measurements. A novel method that integrates nonrigid sphere fitting and evolutionary optimization is proposed to estimate the centers and the functional axes of rotation of the skeletal joints. The reliability of the technique is tested using real movement data and simulated motions with known ground truth 3D measurement noise and different ranges of motion (RoM). With respect to standard nonrigid sphere fitting techniques, the proposed method performs 10–50% better in the best condition (very low noise and wide RoM) and over 100% better with physiological artifacts and RoM. Repeatability in the range of a couple of millimeters, on the localization of the centers of rotation, and in the range of one degree, on the axis directions is obtained from real data experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, E. J., and T. P. Andriacchi. Correcting for deformation in skin-based marker systems. J. Biomech. 34:355–361, 2001.

    Google Scholar 

  2. Bäck, T., G. Rudolph, and H. P. Schwefel. Evolutionary programming and evolution strategies: Similarities and differences. In: Proceedings of the Second Annual Conference on Evolutionary Programming, edited by D. B. Fogel and W. Atmar. La Jolla, CA: Evolutionary Programming Society, 1993, pp. 11–22.

    Google Scholar 

  3. Biggs, J., and K. Horch. A three-dimensional kinematic model of the human long finger and the muscles that actuate it. Med. Eng. Phis. 21:625–639, 1999.

    Google Scholar 

  4. Brand, P. W., and A. M. Hollister. Clinical Biomechanics of the Hand, 3rd ed. St. Louis, MO: Mosby, 1999.

    Google Scholar 

  5. Buchholz, B., and T. J. Armstrong. A kinematic model of the human hand to evaluate its prehensile capabilities. J. Biomech. 25:149–162, 1992.

    Google Scholar 

  6. Cappozzo, A., F. Catani, A. Leardini, M. G. Benedetti, and U. Della Croce. Position and orientation in space of bones during movement: experimental artifacts. Clin. Biomech. 11:90–10, 1996.

    Google Scholar 

  7. Cerveri, P., A. Pedotti, and N. A. Borghese. Combined evolution strategies for dynamic calibration of video-based movements measurement systems. IEEE Trans. Evol. Comput. 5:271–282, 2001.

    Google Scholar 

  8. Cerveri, P., A. Pedotti, and G. Ferrigno. Model-based approach and extended Kalman filters for accurate human motion estimation. Hum. Move. Sci. 22:377–404, 2003.

    Google Scholar 

  9. Coert, J. H., H. G. van Dijke, S. E. Hovius, C. J. Snijders, and M. F. Meek. Quantifying thumb rotation during circumduction utilizing a video technique. J. Orthoped. Res. 21:1151–1155, 2003.

    Google Scholar 

  10. Chiu, H. Y., F. C. Su, S. T. Wang, and H. Y. Hsu. The motion analysis system and goniometry of the finger joints. J. Hand Surg. B 23:788–791, 1998

    Google Scholar 

  11. Flanagan, J. R., and R. S. Johansson. Hand movements. Encycloped. Hum. Brain 2:399–414, 2002.

    Google Scholar 

  12. Gamage, S. S. H. U., and J. Lasenby. New least square solutions for estimating the average center of rotation and axis of rotation. J. Biomech. 35:87–93, 2002.

    Google Scholar 

  13. Halvorsen, K., M. Lesser, and A. Lundberg. A new method for estimating the axis of rotation and the center of rotation. J. Biomech. 32:1221–1227, 1999.

    Google Scholar 

  14. Hansen, N., and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9:159–195, 2001.

    Google Scholar 

  15. Kaelbing, L. P., M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. J. Artific. Intell. Res. 4:237–285, 1996.

    Google Scholar 

  16. Leijnse, J. N., C. J. Snijders, J. E. Bonte, J. M. Landsmeer, J. J. Kalker, J. C. Van der Meulen, G. J. Sonneveld, and S. E. Hovius. The hand of the musician: The kinematics of the bidigital finger system with anatomical restrictions. J. Biomech. 26:1169–1179, 1993.

    Google Scholar 

  17. Leijnse, J. N. and J. J. Kalkar. A two-dimensional kinematics modal of the lumbrical in the human finger. J. Biomech. 28:237–249, 1995.

    Google Scholar 

  18. Lundberg, A. On the use of bone and skin markers in kinematics research. Hum. Move. Sci. 15:411–422, 1996.

    Google Scholar 

  19. Marin, F., H. Mannel, L. Claes, and L. Dürselen. Accurate determination of a joint rotation center based on the minimal amplitude point method. Comp. Aided Surg. 8:30–42, 2003.

    Article  Google Scholar 

  20. Novak, K. E., L. E. Miller, and J. C. Houk Kinematic properties of rapid hand movements in a knob turning task. Exp. Brain Res. 132:419–433, 2000.

    Google Scholar 

  21. Rash, G. S., P. P. Belliappa, M. P. Wachowiak, N. N. Somia, and A. Gupta. A demonstration of validity of 3-D video motion analysis method for measuring finger flexion and extension. J. Biomech. 32:1337–1341, 1999.

    Google Scholar 

  22. Reinschmidt, C., A. J. van den Bogert, B. M. Nigg, A. Lundberg, and N. Murphy. Effect of skin movement on the analysis of skeletal knee joint motion during running. J. Biomech. 30:729–732, 1997.

    Google Scholar 

  23. Pavlovic, V., R. Sharma, and T. S. Huang. Visual interpretation of hand gestures for human–computer interaction: A review. IEEE Patt. Anal. Mach. Intell. 19(7):677–695, 1997.

    Google Scholar 

  24. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C. Cambridge, UK:Cambridge University Press, 1992.

    MATH  Google Scholar 

  25. Santello, M., M. Flanders, and J. F. Soechting. Patterns of hand motion during grasping and the influence of sensory guidance. J. Neurosci. 22:1426–1435, 2002.

    Google Scholar 

  26. Silaghi, M., R. Plaenkers, R. Boulic, P. Fua, and D. Thalmann. Local and global skeleton fitting techniques for optical motion capture. In: Modelling and Motion Capture Techniques for Virtual Environments, Lecture Notes in Artifcial Intelligence, No. 1537, edited by N. Magnenat-Thalmann and D. Thalmann. Berlin: Springer, 1998, pp. 26–40.

    Google Scholar 

  27. Söderkvist, T., and P.-A. Wedin. Determining the movements of the skeleton using well-configured markers. J. Biomech. 12:1473–1477, 1993.

    Google Scholar 

  28. Wu, W., M. J. Black, D. Mumford, Y. Gao, E. Bienenstock, and J. P. Pavlovic. Modeling and decoding motor cortical activity using a switching Kalman filter. IEEE Trans. Biomed. Eng. 51(6):933–942, 2004.

    Google Scholar 

  29. Wu, Y., and T. S. Huang. Hand modeling, analysis and recognition, for vision-based human computer interaction. IEEE Sign. Process. Mag. 1053-5888/01/s10.00, 2001.

  30. Zhang, X., S. W. Lee, and P. Braido. Determining finger segmental centers of rotation in flexion-extension based on surface marker measurement. J. Biomech. 36:1097–1102, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cerveri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerveri, P., Lopomo, N., Pedotti, A. et al. Derivation of Centers and Axes of Rotation for Wrist and Fingers in a Hand Kinematic Model: Methods and Reliability Results. Ann Biomed Eng 33, 402–412 (2005). https://doi.org/10.1007/s10439-005-1743-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-1743-9

Keyword

Navigation