Skip to main content
Log in

The role of nuclear medicine in differentiated thyroid cancer

Die Rolle der Nuklearmedizin beim differenzierten Schilddrüsenkarzinom

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Abstract

In differentiated thyroid cancer (DTC) nuclear medicine is able to cover the spectrum from diagnosis and treatment to follow up keeping patient’s management in one institution. Nowadays, DTC is often diagnosed per chance, presenting as small indolent nodule diagnosed on routinely performed ultrasound. Ultrasound and ultrasonography-guided fine-needle aspiration biopsy together with scintigraphy are probably the most adequate tools for diagnosis. After thyroidectomy, treatment with iodine-131 is routinely performed in a nuclear medicine therapy institution as a standard procedure in most of the cases with regard to histology. In case of iodine positive metastases, repeated therapies can be performed in order to reduce tumour burden. In the follow up of DTC thyroglobulin (tumour marker), ultrasound and diagnostic whole body scan are established procedures. With the development of SPECT/CT and PET/CT (18F-FDG, 68Ga-somatostatin receptor) combining functional and anatomic imaging the nuclear medicine spectrum has further increased.

Zusammenfassung

Bei Patienten mit Schilddrüsenkarzinom deckt die Nuklearmedizin wie bei kaum einer anderen Tumorentität das breite Spektrum von Diagnostik, Therapie und Nachsorge ab. Da die Klinik dieses Tumors oftmals unspezifisch ist und andererseits Schilddrüsenknoten durch Routineuntersuchungen häufig diagnostiziert werden, spielen neben der klinischen Untersuchung die Sonographie, Feinnadelbiopsie und Szintigraphie, die in nuklearmedizinischen Einrichtungen gemeinsam angeboten werden, zur Früherkennung eine wichtige Rolle. Auch wird nach erfolgter chirurgischer Thyreoidektomie bei histologisch verifiziertem differenziertem Schilddrüsenkarzinom in der Mehrzahl der Fälle eine aktinische Therapie mit Jod-131 an einer nuklearmedizinischen Therapiestation zur Restelimination oder gegebenenfalls zur Metastasentherapie angeschlossen. Die posttherapeutische und diagnostische 131J Ganzkörperszintigraphie haben neben der Halssonographie und der Tumormarkerbestimmung im Follow Up von Schilddrüsenkarzinompatienten einen etablierten Stellenwert. Durch die Entwicklung der dualen Bildgebung wie SPECT/CT und PET/CT mit der Möglichkeit auch entdifferenzierte Schilddrüsenkarzinome funktionell (18F-FDG, 68Ga-Rezeptor PET) und morphologisch (CT) darzustellen hat sich das Spektrum der nuklearmedizinischen Diagnostik noch erweitert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gomez-Segovia I, Gallowitsch HJ, Kresnik E, et al. Descriptive epidemiology of thyroid carcinoma in Carinthia, Austria: 1984–2001. Histopathologic features and tumor classification of 734 cases under elevated general iodination of table salt since 1990: population based age stratified analysis on thyroid carcinoma incidence. Thyroid. 2004;14(4):277–86.

    Article  PubMed  CAS  Google Scholar 

  2. Lind P, Kumnig G, Heinisch M, et al. Iodine supplementation in Austria: methods and results. Thyroid. 2002;12:903–7.

    Article  PubMed  CAS  Google Scholar 

  3. Colonna M, Guizard AV, Schvartz C, et al. A time trend analysis of papillary and follicular cancers as a function of tumour size: a study of data from six cancer registries in France (1983–2000). Eur J Cancer. 2007;43(5):891–900.

    Article  PubMed  CAS  Google Scholar 

  4. Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract. 2010;16 Suppl 1:1–43.

    Article  PubMed  Google Scholar 

  5. Hambly NM, Gonen M, Gerst SR, et al. Implementation of evidence-based guidelines for thyroid nodule biopsy: a model for establishment of practice standards. AJR AM J Roentgenol. 2011;196(3):655–60.

    Article  PubMed  Google Scholar 

  6. Chan BK, Desser TS, Mc Dougall IR, et al. Common and uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med. 2003;22:1083–90.

    PubMed  Google Scholar 

  7. Mikosch P, Gallowitsch HJ, Kresnik E, et al. Präoperative Dignitätsabklärung von Schilddrüsenknoten im Strumaendemiegebiet: Möglichkeiten und Limitationen. Wien Med Wochenschr. 2000;150:278–287.

    Google Scholar 

  8. Wong KT, Ahuja AT. Ultrasound of thyroid cancer. Cancer Imaging. 2005;5:157–66.

    Article  PubMed  CAS  Google Scholar 

  9. De Nicola H, Szejnfeld J, Logullo AF, et al. Flow pattern and vascular resistive index as predictors of malignancy risk in thyroid follicular neoplasm. J Ultrasoun Med. 2005;24(7):897–904.

    Google Scholar 

  10. Bianek-Bodzak A, Zaleski K, Studniarek M, et al. Color Doppler sonography in malignancy of thyroid nodules. J Ultrasoun Med. 2003;22:758.

    Google Scholar 

  11. Rago T, Santini F, Scutari M. Elastography: new developments in ultrasound for predecting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92:2917–22.

    Article  PubMed  CAS  Google Scholar 

  12. Rago T, Scutari M, Scartini F, et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or non diagnostic cytology. J Clin Endocrinol Metab. 2010;95(12):5274–80.

    Article  PubMed  CAS  Google Scholar 

  13. Rorive S, D’Hene N, Fossion C, et al. Ultrasound-guided fine-needle aspiration of thyroid nodules: stratification of malignancy risk using follicular proliferation grading, clinical and ultrasonographic features. Eur J Endocrinol. 2010;162:1107–15.

    Article  PubMed  CAS  Google Scholar 

  14. Mikosch P, Gallowitsch HJ, Kresnik E, et al. Value of ultrasound-guided fine-needle aspiration biopsy of thyroid nodules in an endemic goitre area. Eur J Nuc Med. 2000;27(1):62–9.

    Article  CAS  Google Scholar 

  15. Carmeci C, Jeffrey RB, Mc Dougall IR, et al. Ultrasound-guided fine-needle aspiration biopsy of thyroid masses. Thyroid. 1998,8(4):283–289.

    Article  PubMed  CAS  Google Scholar 

  16. Kresnik E, Gallowitsch HJ, Mikosch P, et al. Scintigraphic and ultrasonographic appearance in different tumor stages of thyroid carcinoma. Acta Med Austraca. 2000;27(1):32–5.

    Article  CAS  Google Scholar 

  17. Kusic Z, Becker DV, Saenger EL, et al. Comparison of technetium-99m and iodine-123 imaging of thyroid nodules: correlation with pathologic findings. J Nucl Med. 1990;31(4):393–9.

    PubMed  CAS  Google Scholar 

  18. Beierwalters WH. Comparison of technetium-99m and iodine-123 nodules: correlation with pathologic findings. J Nucl Med. 1990;31(4):400–2.

    Google Scholar 

  19. Kresnik E, Gallowitsch HJ, Mikosch P, et al. Evaluation of thyroid nodules with Tc-99m tetrofosmin dual phase scintigraphy. Eur J Nucl Med. 1997;24:716–21.

    PubMed  CAS  Google Scholar 

  20. Lind P. Multi-tracer imaging of thyroid: is there a role in the preoperative assessment of nodular goiter? Eur J Nucl Med. 1999;26:795–7.

    Article  PubMed  CAS  Google Scholar 

  21. Kim BS, Kim SJ, Kim IJ, et al. Factors associated with positive F-18 Fluorodeoxyglucose positron emission tomography before thyroidectomy in patients with papillary thyroid carcinoma. Thyroid. 2012 Mar 5 Epub ahead of print.

  22. Deandreis D, Al Ghuzlan A, Auperin A, et al. Is (18)F-fluorodeoxyglucose-PET/CT useful for the presurgical characterization of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid. 2012;22(2):165–72.

    Article  PubMed  CAS  Google Scholar 

  23. Joensuu H, Ahonen A, Klemi PJ. 18F-fluorodeoxyglucose imaging in the preoperative diagnosis of thyroid malignancy. Eur J Nucl Med. 1988;13:502–506.

    Article  PubMed  CAS  Google Scholar 

  24. Verburg FA, Stockel MP, Düren C, et al. No survival difference after successful I131 ablation between patients with initially low risk and high risk differentiated thyroid cancer. Nucl Med Mol Imaging. 2010;37(2):276-83.

    Article  Google Scholar 

  25. Pacini F, Ladenson PW, Schlumberger M, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international randomized, controlled study. J Clin Endocrinol Metab. 2006;91:926–32.

    Article  PubMed  CAS  Google Scholar 

  26. Luster M, Sherman SI, Skarulis MC, et al. Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2003;30:1371–7.

    Article  PubMed  CAS  Google Scholar 

  27. Coopers DS, Doberty GM, Haugen BR, et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2006;16:109–42.

    Article  Google Scholar 

  28. Luster M, Clarke SE, Dietlein M; et al. Guidelines on radioiodine treatment of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(10):1941–59.

    Article  PubMed  CAS  Google Scholar 

  29. Pacini F, Castagna MG, Brilli L, et al. Differentiated thyroid cancer: ESMO Clinical recommendations for diagnosis, treatment and follow up. Ann Oncol 2010;21 Suppl 5:214–9.

    Google Scholar 

  30. Hackshaw A, Hasmer C, Mallick U, et al. 131 I activity for remnant ablation in patients with differentiated thyroid cancer: A systematic review. J Clin Endocrinol Metab. 2007;92:28–38.

    Article  PubMed  CAS  Google Scholar 

  31. Pilli T, Brianzoni E, Capocetti F, et al. A comparison of 1850 (50 mCi) and 3700 MBq (100 mCi) 131-iodine administration doses for recombinant thyrotropin-stimulated postoperative thyroid remnant ablation in differentiated thyroid cancer. JCEM. 2007;92(9):3542.

    PubMed  CAS  Google Scholar 

  32. Hermann M, Tonninger K, Kober F. Minimal invasive follicular thyroid carcinoma. Not always total thyroidectomy. Chirurg. 2010;81:627–635.

    Article  PubMed  CAS  Google Scholar 

  33. Thompson LD, Wieneke JA, Paal E, et al. A clinopathologic study of minimally invasive follicular carcinoma of the thyroid gland with a review of the English literature. Cancer. 2001;91(3):505-24.

    Article  PubMed  CAS  Google Scholar 

  34. Pacini F, Schlumberger M, Dralle H, et al. European thyroid cancer taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154:787–803.

    Article  PubMed  CAS  Google Scholar 

  35. Fatourechi V, Hay ID, Mullan BP, et al. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid. 2000;10:573–7.

    Article  PubMed  CAS  Google Scholar 

  36. Kohlfuerst S, Igerc I, Lobnig M, et al. Posttherapeutic 131I SPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. Eur J Nucl Med Mol Imaging. 2009;36:886–893.

    Article  PubMed  CAS  Google Scholar 

  37. Schmidt D, Szikszai A, Linke R, et al. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med. 2009;50:18–23.

    Article  PubMed  Google Scholar 

  38. Grewal RK, Tuttle RM, Fox J, et al. The effect of posttherapy 131 SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med. 2010;51(9):1361–7.

    Article  PubMed  CAS  Google Scholar 

  39. Van Herle AJ, Uller RP. Elevated thyroglobulin: a marker of metastases in differentiated thyroid carcinoma. J Clin Invest. 1975;56:272–6.

    Article  Google Scholar 

  40. Cherk MH, Francis P, Topliss DJ, et al. Incidence and implications of negative serum thyroglobulin but positive I‐131 whole body scans in patients with well differentiated thyroid cancer prepared with rhTSH or thyroid hormone withdrawal. Clin Endocrinol (Oxf) 2012;76(5):734–40

    Google Scholar 

  41. Lind P, Kohlfürst S. Respective roles of thyroglobulin, radioiodine imaging, and positron emission tomography in the assessment of thyroid cancer. Semin Nucl Med. 2006;36(3):194–205.

    Article  PubMed  Google Scholar 

  42. Pacini F. Follow up of differentiated thyroid cancer. Eur J Nucl Med. 2002;29 Suppl 2:492–496.

    Article  Google Scholar 

  43. Haber RS. Role of ultrasonography in the diagnosis and management of thyroid cancer. Endocr Pract. 2000;6:396–400.

    PubMed  CAS  Google Scholar 

  44. Rosario PW, de Faria S, Bicalho L, et al. Ultrasonographic differentiation between metastatic and benign lymph nodes in patients with papillary thyroid carcinoma. J Ultrasound Med. 2005;24(10):1385–9.

    PubMed  Google Scholar 

  45. Pacini F, Molinaro E, Castagna MG, et al. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:3668–3673.

    Article  PubMed  CAS  Google Scholar 

  46. Torlontano M, Attard M, Crocetti U, et al. Follow-up of low risk patients with papillary thyroid cancer: role of neck ultrasonography in detecting lymph node metastases. J Clin Endocrinol Metab. 2004;89:3402–3407.

    Article  PubMed  CAS  Google Scholar 

  47. Lubin E, Mechlis-Frish S, Zatz S et al. Serum thyroglobulin and iodine-131 whole body scan in the diagnosis and assessment of treatment for metastatic differentiated thyroid carcinoma. J Nucl Med. 1994;35(2):257–262.

    PubMed  CAS  Google Scholar 

  48. De Meer SG, Vriens MR, Zelissen PM, et al. The role of routine-diagnostic radioiodine whole-body scintigraphy in patients with high-risk differentiated thyroid cancer.J Nucl Med. 2011;52(1):56–9.

    Article  PubMed  Google Scholar 

  49. Pineda JD, Lee T, Ain K, et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab. 1995;80(5):1488–92.

    Article  PubMed  CAS  Google Scholar 

  50. Lind P. Should high hTg levels in the absence of iodine uptake be treated. Eur J Nucl Med. 2003;30:157–160.

    Article  Google Scholar 

  51. Barwick T, Murray I, Megadmi H et al. Single photon emission computed tomography (SPECT)/computed tomography using Iodine-123 in patients with differentiated thyroid cancer: additional value over whole body planar imaging and SPECT. Eur J Endocrinol. 2010;162(6):1131–9.

    Article  PubMed  CAS  Google Scholar 

  52. Spanu A, Solinas ME, Chessa F, et al. 131 I SPECT/CT in the follow up of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med. 2009;50(2):184–90.

    Article  PubMed  Google Scholar 

  53. Zoller M, Kohlfuerst S, Igerc I, et al. Combined PET/CT in the follow-up of differentiated thyroid carcinoma: what is the impact of each modality? Eur J Nucl Med Mol Imaging. 2007;34(4):487–95.

    Article  PubMed  Google Scholar 

  54. Bannas P, Derlin T, Groth M, et al. Can (18)F-FDG-PET/CT be generally recommended in patients with differentiated thyroid carcinoma and elevated thyroglobulin levels but negative I-131 whole body scan? Ann Nucl Med. 2012;26(1):77–5.

    Article  PubMed  CAS  Google Scholar 

  55. Shammas A, Degirmenci B, Mountz JM, et al. 18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J Nucl Med. 2007;48(2):221–6.

    PubMed  CAS  Google Scholar 

  56. Giovanella L, Ceriani L, De Palma D, et al. Relationship between serum thyroglobulin and (18) FDG PET/CT in (131) I‐negative differentiated thyroid carcinomas. Head Neck 2012;34(5):626–31.

    Article  PubMed  Google Scholar 

  57. Leboulleux S, Schroeder PR, Busaidy NL. Assessment of the incremental value of recombinant TSH stimulation before FDG PET/CT imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab. 2009;94:1310–1316.

    Article  PubMed  CAS  Google Scholar 

  58. Petrich T, Börner AR, Otho D. Influence of rhTSH on ((18)F) fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2002;29(5):641–7.

    Article  PubMed  CAS  Google Scholar 

  59. Jentzen W, Freudenberg L, Bockisch A, et al. Quantitative imaging of (124)I with PET/CT in pretherapy lesion dosimetry. Effects impairing image quantification and their corrections. Q J Nucl Med Mol Imaging. 2011;55(1):21–43.

    PubMed  CAS  Google Scholar 

  60. Freudenberg LS, Jentzen W, Stahl A, et al. Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38 Suppl 1:S48–56.

    Article  PubMed  Google Scholar 

  61. Middendorp M, Selkinski I, Happel C, et al. Comparison of positron emission tomography with 18F FDG and 68 Ga DOTATOC in recurrent differentiated thyroid cancer. Preliminary data. Q J Nucl med Mol Imaging. 2010;54(1):76–83.

    PubMed  CAS  Google Scholar 

  62. Gabriel M, Andergassen U, Putzer D, et al. Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging. 2010;54(1):92–9.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Kohlfürst MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlfürst, S. The role of nuclear medicine in differentiated thyroid cancer. Wien Med Wochenschr 162, 407–415 (2012). https://doi.org/10.1007/s10354-012-0129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-012-0129-5

Keywords

Schlüsselwörter

Navigation