Skip to main content

Imaging Modalities in the Diagnosis of Recurrent or Metastatic Thyroid Cancer

  • Chapter
  • First Online:
Management of Differentiated Thyroid Cancer

Abstract

The imaging of thyroid cancer takes a multimodality approach, and this is particularly the case for the workup of recurrent and metastatic disease. Ultrasound can be used to look for regional nodes or evaluate palpable lesions. Cross-sectional imaging such as computed tomography (CT) and magnetic resonance [MR] can look for disease in the neck as well as throughout the body. Total body iodine scans with low-dose 123I or 131I can be used for evaluating residual functioning tissue following total thyroidectomy prior to radioiodine ablation and can also be used to detect nodal and distant metastatic disease in high-risk patients; some iodine-avid metastases may not be visible on CT or MR imaging. In high-risk patients, total body iodine (TBI) scans can help determine the appropriate 131I dose for radioablation. TBI scans can also be used to evaluate patients suspected of having recurrent disease following ablation (e.g., rising serum thyroglobulin). Tumors that are not visible on TBI in spite of elevated thyroglobulin may have become less well differentiated and may no longer metabolize iodide. These patients may benefit from fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scanning, since FDG accumulates in dedifferentiated tumors.

This chapter describes the role, technique, and imaging findings of patients with known or suspected recurrent or metastatic disease in patients with well-differentiated thyroid cancer. Knowledge of the strengths and limitations of the available imaging options will help the clinician optimize the management of patients with well-differentiated thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howlader N, Noone A, Krapcho M, Garshell J, Miller D, Altekruse S, et al. SEER Cancer Statistics Review, 1975–2012 Posted to the SEER website: National Cancer Institute; 2015 [cited 2015 12/25/2014].

    Google Scholar 

  2. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yeh MW, Bauer AJ, Bernet VA, Ferris RL, Loevner LA, Mandel SJ, et al. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery. Thyroid. 2015;25(1):3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ito Y, Uruno T, Nakano K, Takamura Y, Miya A, Kobayashi K, et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid. 2003;13(4):381–7.

    Article  PubMed  Google Scholar 

  5. Chow SM, Law SC, Chan JK, Au SK, Yau S, Lau WH. Papillary microcarcinoma of the thyroid-prognostic significance of lymph node metastasis and multifocality. Cancer. 2003;98(1):31–40.

    Article  PubMed  Google Scholar 

  6. Nam-Goong IS, Kim HY, Gong G, Lee HK, Hong SJ, Kim WB, et al. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol. 2004;60(1):21–8.

    Article  Google Scholar 

  7. Arturi F, Russo D, Giuffrida D, Ippolito A, Perrotti N, Vigneri R, et al. Early diagnosis by genetic analysis of differentiated thyroid cancer metastases in small lymph nodes. J Clin Endocrinol Metab. 1997;82(5):1638–41.

    Article  CAS  PubMed  Google Scholar 

  8. Randolph GW, Duh QY, Heller KS, LiVolsi VA, Mandel SJ, Steward DL, et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid. 2012;22(11):1144–52.

    Article  PubMed  Google Scholar 

  9. Shimamoto K, Satake H, Sawaki A, Ishigaki T, Funahashi H, Imai T. Preoperative staging of thyroid papillary carcinoma with ultrasonography. Eur J Radiol. 1998;29(1):4–10.

    Article  CAS  PubMed  Google Scholar 

  10. Solorzano CC, Carneiro DM, Ramirez M, Lee TM, Irvin GL, 3rd. Surgeon-performed ultrasound in the management of thyroid malignancy. Am Surg. 2004;70(7):576–80; discussion 80–2.

    Google Scholar 

  11. Stulak JM, Grant CS, Farley DR, Thompson GB, van Heerden JA, Hay ID, et al. Value of preoperative ultrasonography in the surgical management of initial and reoperative papillary thyroid cancer. Arch Surg. 2006;141(5):489–94; discussion 94–6.

    Google Scholar 

  12. Kouvaraki MA, Shapiro SE, Fornage BD, Edeiken-Monro BS, Sherman SI, Vassilopoulou-Sellin R, et al. Role of preoperative ultrasonography in the surgical management of patients with thyroid cancer. Surgery. 2003;134(6):946–54; discussion 54–5.

    Google Scholar 

  13. O’Connell K, Yen TW, Quiroz F, Evans DB, Wang TS. The utility of routine preoperative cervical ultrasonography in patients undergoing thyroidectomy for differentiated thyroid cancer. Surgery. 2013;154(4):697–701; discussion 701–3.

    Google Scholar 

  14. Wu LM, Gu HY, Qu XH, Zheng J, Zhang W, Yin Y, et al. The accuracy of ultrasonography in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid carcinoma: a meta-analysis. Eur J Radiol. 2012;81(8):1798–805.

    Article  PubMed  Google Scholar 

  15. Lee DW, Ji YB, Sung ES, Park JS, Lee YJ, Park DW, et al. Roles of ultrasonography and computed tomography in the surgical management of cervical lymph node metastases in papillary thyroid carcinoma. Eur J Surg Oncol. 2013;39(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  16. Khokhar MT, Day KM, Sangal RB, Ahmedli NN, Pisharodi LR, Beland MD, et al. Preoperative high-resolution ultrasound for the assessment of malignant central compartment lymph nodes in papillary thyroid cancer. Thyroid. 2015;25(12):1351–4.

    Article  PubMed  Google Scholar 

  17. Liu Z, Xun X, Wang Y, Mei L, He L, Zeng W, et al. MRI and ultrasonography detection of cervical lymph node metastases in differentiated thyroid carcinoma before reoperation. Am J Transl Res. 2014;6(2):147–54.

    PubMed  PubMed Central  Google Scholar 

  18. Shim MJ, Roh JL, Gong G, Choi KJ, Lee JH, Cho SH, et al. Preoperative detection and predictors of level V lymph node metastasis in patients with papillary thyroid carcinoma. Br J Surg. 2013;100(4):497–503.

    Article  CAS  PubMed  Google Scholar 

  19. Moon HJ, Kim EK, Yoon JH, Kwak JY. Differences in the diagnostic performances of staging US for thyroid malignancy according to experience. Ultrasound Med Biol. 2012;38(4):568–73.

    Article  PubMed  Google Scholar 

  20. Leenhardt L, Erdogan MF, Hegedus L, Mandel SJ, Paschke R, Rago T, et al. 2013 European thyroid association guidelines for cervical ultrasound scan and ultrasound-guided techniques in the postoperative management of patients with thyroid cancer. Eur Thyroid J. 2013;2(3):147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosario PW, Tavares WC, Borges MA, Santos JB, Calsolari MR. Ultrasonographic differentiation of cervical lymph nodes in patients with papillary thyroid carcinoma after thyroidectomy and radioiodine ablation: a prospective study. Endocr Pract. 2014;20(4):293–8.

    Article  PubMed  Google Scholar 

  22. Robenshtok E, Fish S, Bach A, Dominguez JM, Shaha A, Tuttle RM. Suspicious cervical lymph nodes detected after thyroidectomy for papillary thyroid cancer usually remain stable over years in properly selected patients. J Clin Endocrinol Metab. 2012;97(8):2706–13.

    Article  CAS  PubMed  Google Scholar 

  23. Moreno MA, Edeiken-Monroe BS, Siegel ER, Sherman SI, Clayman GL. In papillary thyroid cancer, preoperative central neck ultrasound detects only macroscopic surgical disease, but negative findings predict excellent long-term regional control and survival. Thyroid. 2012;22(4):347–55.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ito Y, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, et al. Ultrasonographically and anatomopathologically detectable node metastases in the lateral compartment as indicators of worse relapse-free survival in patients with papillary thyroid carcinoma. World J Surg. 2005;29(7):917–20.

    Article  PubMed  Google Scholar 

  25. Ito Y, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, et al. Clinical significance of metastasis to the central compartment from papillary microcarcinoma of the thyroid. World J Surg. 2006;30(1):91–9.

    Article  PubMed  Google Scholar 

  26. Ito Y, Fukushima M, Tomoda C, Inoue H, Kihara M, Higashiyama T, et al. Prognosis of patients with papillary thyroid carcinoma having clinically apparent metastasis to the lateral compartment. Endocr J. 2009;56(6):759–66.

    Article  PubMed  Google Scholar 

  27. Luigi Solbiati JWC, Reading CC, Meredith James E, Hay ID. The thyroid gland. In: Rumack CM, Wilson SR, William Charboneau J, Levine D, editors. Diagnostic ultrasound. Philadelphia: Mosby; 2011. p. 708–49.

    Google Scholar 

  28. Tomoda C, Uruno T, Takamura Y, Ito Y, Miya A, Kobayashi K, et al. Ultrasonography as a method of screening for tracheal invasion by papillary thyroid cancer. Surg Today. 2005;35(10):819–22.

    Article  PubMed  Google Scholar 

  29. Ahn JE, Lee JH, Yi JS, Shong YK, Hong SJ, Lee DH, et al. Diagnostic accuracy of CT and ultrasonography for evaluating metastatic cervical lymph nodes in patients with thyroid cancer. World J Surg. 2008;32(7):1552–8.

    Article  PubMed  Google Scholar 

  30. Choi JS, Kim J, Kwak JY, Kim MJ, Chang HS, Kim EK. Preoperative staging of papillary thyroid carcinoma: comparison of ultrasound imaging and CT. AJR Am J Roentgenol. 2009;193(3):871–8.

    Article  PubMed  Google Scholar 

  31. Lesnik D, Cunnane ME, Zurakowski D, Acar GO, Ecevit C, Mace A, et al. Papillary thyroid carcinoma nodal surgery directed by a preoperative radiographic map utilizing CT scan and ultrasound in all primary and reoperative patients. Head Neck. 2014;36(2):191–202.

    Article  PubMed  Google Scholar 

  32. Kim E, Park JS, Son KR, Kim JH, Jeon SJ, Na DG. Preoperative diagnosis of cervical metastatic lymph nodes in papillary thyroid carcinoma: comparison of ultrasound, computed tomography, and combined ultrasound with computed tomography. Thyroid. 2008;18(4):411–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lepoutre-Lussey C, Maddah D, Golmard JL, Russ G, Tissier F, Tresallet C, et al. Post-operative neck ultrasound and risk stratification in differentiated thyroid cancer patients with initial lymph node involvement. Eur J Endocrinol. 2014;170(6):837–46.

    Article  CAS  PubMed  Google Scholar 

  34. Samih N, Hovsepian S, Notel F, Prorok M, Zattara-Cannoni H, Mathieu S, et al. The impact of N- and O-glycosylation on the functions of Glut-1 transporter in human thyroid anaplastic cells. Biochim Biophys Acta. 2003;1621(1):92–101.

    Article  CAS  PubMed  Google Scholar 

  35. Frasoldati A, Pesenti M, Gallo M, Caroggio A, Salvo D, Valcavi R. Diagnosis of neck recurrences in patients with differentiated thyroid carcinoma. Cancer. 2003;97(1):90–6.

    Article  PubMed  Google Scholar 

  36. Torlontano M, Crocetti U, Augello G, D’Aloiso L, Bonfitto N, Varraso A, et al. Comparative evaluation of recombinant human thyrotropin-stimulated thyroglobulin levels, 131I whole-body scintigraphy, and neck ultrasonography in the follow-up of patients with papillary thyroid microcarcinoma who have not undergone radioiodine therapy. J Clin Endocrinol Metab. 2006;91(1):60–3.

    Article  CAS  PubMed  Google Scholar 

  37. Rondeau G, Fish S, Hann LE, Fagin JA, Tuttle RM. Ultrasonographically detected small thyroid bed nodules identified after total thyroidectomy for differentiated thyroid cancer seldom show clinically significant structural progression. Thyroid. 2011;21(8):845–53.

    Article  PubMed  Google Scholar 

  38. Shin JH, Han BK, Ko EY, Kang SS. Sonographic findings in the surgical bed after thyroidectomy: comparison of recurrent tumors and nonrecurrent lesions. J Ultrasound Med. 2007;26(10):1359–66.

    Article  PubMed  Google Scholar 

  39. Leboulleux S, Girard E, Rose M, Travagli JP, Sabbah N, Caillou B, et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92(9):3590–4.

    Article  CAS  PubMed  Google Scholar 

  40. Leboulleux S, Rubino C, Baudin E, Caillou B, Hartl DM, Bidart JM, et al. Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with neck lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis. J Clin Endocrinol Metab. 2005;90(10):5723–9.

    Article  CAS  PubMed  Google Scholar 

  41. Bardet S, Malville E, Rame JP, Babin E, Samama G, De Raucourt D, et al. Macroscopic lymph-node involvement and neck dissection predict lymph-node recurrence in papillary thyroid carcinoma. Eur J Endocrinol. 2008;158(4):551–60.

    Article  CAS  PubMed  Google Scholar 

  42. Hay ID, Lee RA, Davidge-Pitts C, Reading CC, Charboneau JW. Long-term outcome of ultrasound-guided percutaneous ethanol ablation of selected “recurrent” neck nodal metastases in 25 patients with TNM stages III or IVA papillary thyroid carcinoma previously treated by surgery and 131I therapy. Surgery. 2013;154(6):1448–54; discussion 54–5.

    Google Scholar 

  43. Na DG, Lee JH, Jung SL, Kim JH, Sung JY, Shin JH, et al. Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: consensus statement and recommendations. Korean J Radiol. 2012;13(2):117–25.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Papini E, Bizzarri G, Bianchini A, Valle D, Misischi I, Guglielmi R, et al. Percutaneous ultrasound-guided laser ablation is effective for treating selected nodal metastases in papillary thyroid cancer. J Clin Endocrinol Metab. 2013;98(1):E92–7.

    Article  CAS  PubMed  Google Scholar 

  45. Feine U, Lietzenmayer R, Hanke JP, Wohrle H, Muller-Schauenburg W. [18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and 131I]. Nuklearmedizin. 1995;34(4):127–34.

    Google Scholar 

  46. Khan N, Oriuchi N, Higuchi T, Zhang H, Endo K. PET in the follow-up of differentiated thyroid cancer. Br J Radiol. 2003;76(910):690–5.

    Article  CAS  PubMed  Google Scholar 

  47. Grabellus F, Nagarajah J, Bockisch A, Schmid KW, Sheu SY. Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin Nucl Med. 2012;37(2):121–7.

    Article  PubMed  Google Scholar 

  48. Hong CM, Ahn BC, Jeong SY, Lee SW, Lee J. Distant metastatic lesions in patients with differentiated thyroid carcinoma. Clinical implications of radioiodine and FDG uptake. Nuklearmedizin. 2013;52(4):121–9.

    Article  CAS  PubMed  Google Scholar 

  49. Chatziioannou SN, Georgakopoulos AT, Pianou NK, Kafiri GT, Pavlou SN, Kallergi M. Recurrent thyroid cancer diagnosis: ROC study of the effect of a high-resolution head and neck 18F-FDG PET/CT scan. Acad Radiol. 2014;21(1):58–63.

    Article  PubMed  Google Scholar 

  50. Jeong HS, Baek CH, Son YI, Choi JY, Kim HJ, Ko YH, et al. Integrated 18F-FDG PET/CT for the initial evaluation of cervical node level of patients with papillary thyroid carcinoma: comparison with ultrasound and contrast-enhanced CT. Clin Endocrinol. 2006;65(3):402–7.

    Article  Google Scholar 

  51. Jung JH, Kim CY, Son SH, Kim DH, Jeong SY, Lee SW, et al. Preoperative prediction of cervical lymph node metastasis using primary tumor SUVmax on 18F-FDG PET/CT in patients with papillary thyroid carcinoma. PLoS One. 2015;10(12):e0144152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Avram AM, Fig LM, Frey KA, Gross MD, Wong KK. Preablation 131-I scans with SPECT/CT in postoperative thyroid cancer patients: what is the impact on staging? J Clin Endocrinol Metab. 2013;98(3):1163–71.

    Article  CAS  PubMed  Google Scholar 

  53. Van Nostrand D, Aiken M, Atkins F, Moreau S, Garcia C, Acio E, et al. The utility of radioiodine scans prior to iodine 131 ablation in patients with well-differentiated thyroid cancer. Thyroid. 2009;19(8):849–55.

    Article  PubMed  CAS  Google Scholar 

  54. Chen MK, Yasrebi M, Samii J, Staib LH, Doddamane I, Cheng DW. The utility of I-123 pretherapy scan in I-131 radioiodine therapy for thyroid cancer. Thyroid. 2012;22(3):304–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hu YH, Wang PW, Wang ST, Lee CH, Chen HY, Chou FF, et al. Influence of 131I diagnostic dose on subsequent ablation in patients with differentiated thyroid carcinoma: discrepancy between the presence of visually apparent stunning and the impairment of successful ablation. Nucl Med Commun. 2004;25(8):793–7.

    Article  PubMed  Google Scholar 

  56. Muratet JP, Daver A, Minier JF, Larra F. Influence of scanning doses of iodine-131 on subsequent first ablative treatment outcome in patients operated on for differentiated thyroid carcinoma. J Nucl Med. 1998;39(9):1546–50.

    CAS  PubMed  Google Scholar 

  57. Verburg FA, Verkooijen RB, Stokkel MP, van Isselt JW. The success of 131I ablation in thyroid cancer patients is significantly reduced after a diagnostic activity of 40 MBq 131I. Nuklearmedizin. 2009;48(4):138–42; quiz N19-20.

    Google Scholar 

  58. Yap BK, Murby B. No adverse affect in clinical outcome using low preablation diagnostic [131]i activity in differentiated thyroid cancer: refuting thyroid-stunning effect. J Clin Endocrinol Metab. 2014;99(7):2433–40.

    Article  CAS  PubMed  Google Scholar 

  59. Morris LF, Waxman AD, Braunstein GD. The nonimpact of thyroid stunning: remnant ablation rates in 131I-scanned and nonscanned individuals. J Clin Endocrinol Metab. 2001;86(8):3507–11.

    Article  CAS  PubMed  Google Scholar 

  60. Silberstein EB. Comparison of outcomes after [123]I versus [131]I pre-ablation imaging before radioiodine ablation in differentiated thyroid carcinoma. J Nucl Med. 2007;48(7):1043–6.

    Article  CAS  PubMed  Google Scholar 

  61. Leger FA, Izembart M, Dagousset F, Barritault L, Baillet G, Chevalier A, et al. Decreased uptake of therapeutic doses of iodine-131 after 185-MBq iodine-131 diagnostic imaging for thyroid remnants in differentiated thyroid carcinoma. Eur J Nucl Med. 1998;25(3):242–6.

    Article  CAS  PubMed  Google Scholar 

  62. Etchebehere EC, Santos AO, Matos PS, Assumpcao LV, Lima MC, Lima MC, et al. Is thyroid stunning clinically relevant? A retrospective analysis of 208 patients. Arq Bras Endocrinol Metabol. 2014;58(3):292–300.

    Article  PubMed  Google Scholar 

  63. Yin Y, Mao Q, Chen S, Li N, Li X, Li Y. A clinical trial of optimal time interval between ablation and diagnostic activity when a pretherapy rai scanning is performed on patients with differentiated thyroid carcinoma. Medicine. 2015;94(31):e1308.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Blum M, Tiu S, Chu M, Goel S, Friedman K. I-131 SPECT/CT elucidates cryptic findings on planar whole-body scans and can reduce needless therapy with I-131 in post-thyroidectomy thyroid cancer patients. Thyroid. 2011;21(11):1235–47.

    Article  PubMed  Google Scholar 

  65. Wong KK, Sisson JC, Koral KF, Frey KA, Avram AM. Staging of differentiated thyroid carcinoma using diagnostic 131I SPECT/CT. AJR Am J Roentgenol. 2010;195(3):730–6.

    Article  PubMed  Google Scholar 

  66. Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Incremental value of diagnostic 131I SPECT/CT fusion imaging in the evaluation of differentiated thyroid carcinoma. AJR Am J Roentgenol. 2008;191(6):1785–94.

    Article  PubMed  Google Scholar 

  67. Barwick T, Murray I, Megadmi H, Drake WM, Plowman PN, Akker SA, et al. Single photon emission computed tomography [SPECT]/computed tomography using Iodine-123 in patients with differentiated thyroid cancer: additional value over whole body planar imaging and SPECT. Eur J Endocrinol. 2010;162(6):1131–9.

    Article  CAS  PubMed  Google Scholar 

  68. Avram AM, Esfandiari NH, Wong KK. Preablation 131-I scans with SPECT/CT contribute to thyroid cancer risk stratification and 131-I therapy planning. J Clin Endocrinol Metab. 2015;100(5):1895–902.

    Article  CAS  PubMed  Google Scholar 

  69. Agrawal K, Bhattacharya A, Mittal BR. Role of single photon emission computed tomography/computed tomography in diagnostic iodine-131 scintigraphy before initial radioiodine ablation in differentiated thyroid cancer. Indian J Nucl Med. 2015;30(3):221–6.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sherman SI, Tielens ET, Sostre S, Wharam Jr MD, Ladenson PW. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab. 1994;78(3):629–34.

    CAS  PubMed  Google Scholar 

  71. Fatourechi V, Hay ID, Mullan BP, Wiseman GA, Eghbali-Fatourechi GZ, Thorson LM, et al. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid. 2000;10(7):573–7.

    Article  CAS  PubMed  Google Scholar 

  72. Souza Rosario PW, Barroso AL, Rezende LL, Padrao EL, Fagundes TA, Penna GC, et al. Post I-131 therapy scanning in patients with thyroid carcinoma metastases: an unnecessary cost or a relevant contribution? Clin Nucl Med. 2004;29(12):795–8.

    Article  PubMed  Google Scholar 

  73. Spies WG, Wojtowicz CH, Spies SM, Shah AY, Zimmer AM. Value of post-therapy whole-body I-131 imaging in the evaluation of patients with thyroid carcinoma having undergone high-dose I-131 therapy. Clin Nucl Med. 1989;14(11):793–800.

    Article  CAS  PubMed  Google Scholar 

  74. Ciappuccini R, Heutte N, Trzepla G, Rame JP, Vaur D, Aide N, et al. Postablation [131]I scintigraphy with neck and thorax SPECT-CT and stimulated serum thyroglobulin level predict the outcome of patients with differentiated thyroid cancer. Eur J Endocrinol. 2011;164(6):961–9.

    Article  CAS  PubMed  Google Scholar 

  75. Salvatori M, Perotti G, Villani MF, Mazza R, Maussier ML, Indovina L, et al. Determining the appropriate time of execution of an I-131 post-therapy whole-body scan: comparison between early and late imaging. Nucl Med Commun. 2013;34(9):900–8.

    PubMed  Google Scholar 

  76. Oh JR, Byun BH, Hong SP, Chong A, Kim J, Yoo SW, et al. Comparison of [1][3][1]I whole-body imaging, [1][3][1]I SPECT/CT, and [1][8]F-FDG PET/CT in the detection of metastatic thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38(8):1459–68.

    Article  PubMed  Google Scholar 

  77. Kohlfuerst S, Igerc I, Lobnig M, Gallowitsch HJ, Gomez-Segovia I, Matschnig S, et al. Posttherapeutic [131]I SPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. Eur J Nucl Med Mol Imaging. 2009;36(6):886–93.

    Article  CAS  PubMed  Google Scholar 

  78. Chen L, Luo Q, Shen Y, Yu Y, Yuan Z, Lu H, et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med. 2008;49(12):1952–7.

    Article  PubMed  Google Scholar 

  79. Ruf J, Lehmkuhl L, Bertram H, Sandrock D, Amthauer H, Humplik B, et al. Impact of SPECT and integrated low-dose CT after radioiodine therapy on the management of patients with thyroid carcinoma. Nucl Med Commun. 2004;25(12):1177–82.

    Article  PubMed  Google Scholar 

  80. Tharp K, Israel O, Hausmann J, Bettman L, Martin WH, Daitzchman M, et al. Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2004;31(10):1435–42.

    Article  CAS  PubMed  Google Scholar 

  81. Wakabayashi H, Nakajima K, Fukuoka M, Inaki A, Nakamura A, Kayano D, et al. Double-phase [131]I whole body scan and [131]I SPECT-CT images in patients with differentiated thyroid cancer: their effectiveness for accurate identification. Ann Nucl Med. 2011;25(9):609–15.

    Article  PubMed  Google Scholar 

  82. Aide N, Heutte N, Rame JP, Rousseau E, Loiseau C, Henry-Amar M, et al. Clinical relevance of single-photon emission computed tomography/computed tomography of the neck and thorax in postablation [131]I scintigraphy for thyroid cancer. J Clin Endocrinol Metab. 2009;94(6):2075–84.

    Article  CAS  PubMed  Google Scholar 

  83. Schmidt D, Linke R, Uder M, Kuwert T. Five months’ follow-up of patients with and without iodine-positive lymph node metastases of thyroid carcinoma as disclosed by [131]I-SPECT/CT at the first radioablation. Eur J Nucl Med Mol Imaging. 2010;37(4):699–705.

    Article  PubMed  Google Scholar 

  84. Grewal RK, Tuttle RM, Fox J, Borkar S, Chou JF, Gonen M, et al. The effect of posttherapy 131I SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med. 2010;51(9):1361–7.

    Article  CAS  PubMed  Google Scholar 

  85. Maruoka Y, Abe K, Baba S, Isoda T, Sawamoto H, Tanabe Y, et al. Incremental diagnostic value of SPECT/CT with 131I scintigraphy after radioiodine therapy in patients with well-differentiated thyroid carcinoma. Radiology. 2012;265(3):902–9.

    Article  PubMed  Google Scholar 

  86. Jeong SY, Lee SW, Kim HW, Song BI, Ahn BC, Lee J. Clinical applications of SPECT/CT after first I-131 ablation in patients with differentiated thyroid cancer. Clin Endocrinol. 2014;81(3):445–51.

    Article  CAS  Google Scholar 

  87. Wang H, Fu HL, Li JN, Zou RJ, Gu ZH, Wu JC. The role of single-photon emission computed tomography/computed tomography for precise localization of metastases in patients with differentiated thyroid cancer. Clin Imaging. 2009;33(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  88. Hassan FU, Mohan HK. Clinical utility of SPECT/CT imaging post-radioiodine therapy: does it enhance patient Management in Thyroid Cancer? Eur Thyroid J. 2015;4(4):239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sriprapaporn J, Sethanandha C, Yingsa-nga T, Komoltri C, Thongpraparn T, Harnnanthawiwai C. Utility of adding SPECT/CT imaging to post-therapeutic radioiodine whole-body scan in patients with differentiated thyroid cancer. J Med Assoc Thai. 2015;98(6):596–605.

    PubMed  Google Scholar 

  90. Burlison JS, Hartshorne MF, Voda AM, Cocks FH, Fair JR. SPECT/CT localization of oral radioiodine activity: a retrospective study and in-vitro assessment. Nucl Med Commun. 2013;34(12):1216–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Savas H, Wong KK, Saglik B, Hubers D, Ackermann RJ, Avram AM. SPECT/CT characterization of oral activity on radioiodine scintigraphy. J Clin Endocrinol Metab. 2013;98(11):4410–6.

    Article  CAS  PubMed  Google Scholar 

  92. Lee JW, Lee SM, Lee DH, Kim YJ. Clinical utility of 18F-FDG PET/CT concurrent with 131I therapy in intermediate-to-high-risk patients with differentiated thyroid cancer: dual-center experience with 286 patients. J Nucl Med. 2013;54(8):1230–6.

    Article  CAS  PubMed  Google Scholar 

  93. Rosenbaum-Krumme SJ, Gorges R, Bockisch A, Binse I. [1][8]F-FDG PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imaging. 2012;39(9):1373–80.

    Article  PubMed  Google Scholar 

  94. Ruhlmann M, Binse I, Bockisch A, Rosenbaum-Krumme SJ. Initial [18F]FDG PET/CT in high-risk DTC patients. A three-year follow-up. Nuklearmedizin. 2016;55(3):99–103.

    Article  PubMed  Google Scholar 

  95. Kim H, Na KJ, Choi JH, Ahn BC, Ahn D, Sohn JH. Feasibility of FDG-PET/CT for the initial diagnosis of papillary thyroid cancer. Eur Arch Otorhinolaryngol. 2016;273(6):1569–76.

    Article  PubMed  Google Scholar 

  96. Nascimento C, Borget I, Al Ghuzlan A, Deandreis D, Hartl D, Lumbroso J, et al. Postoperative fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography: an important imaging modality in patients with aggressive histology of differentiated thyroid cancer. Thyroid. 2015;25(4):437–44.

    Article  CAS  PubMed  Google Scholar 

  97. Pryma DA, Schoder H, Gonen M, Robbins RJ, Larson SM, Yeung HW. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hurthle cell thyroid cancer patients. J Nucl Med. 2006;47(8):1260–6.

    PubMed  Google Scholar 

  98. Lowe VJ, Mullan BP, Hay ID, McIver B, Kasperbauer JL. 18F-FDG PET of patients with Hurthle cell carcinoma. J Nucl Med. 2003;44(9):1402–6.

    PubMed  Google Scholar 

  99. Marcus C, Antoniou A, Rahmim A, Ladenson P, Subramaniam RM. Fluorodeoxyglucose positron emission tomography/computerized tomography in differentiated thyroid cancer management: importance of clinical justification and value in predicting survival. J Med Imaging Radiat Oncol. 2015;59(3):281–8.

    Article  PubMed  Google Scholar 

  100. Gaertner FC, Okamoto S, Shiga T, Ito YM, Uchiyama Y, Manabe O, et al. FDG PET performed at thyroid remnant ablation has a higher predictive value for long-term survival of high-risk patients with well-differentiated thyroid cancer than radioiodine uptake. Clin Nucl Med. 2015;40(5):378–83.

    Article  PubMed  Google Scholar 

  101. Schlumberger M, Berg G, Cohen O, Duntas L, Jamar F, Jarzab B, et al. Follow-up of low-risk patients with differentiated thyroid carcinoma: a European perspective. Eur J Endocrinol. 2004;150(2):105–12.

    Article  CAS  PubMed  Google Scholar 

  102. Mazzaferri EL, Robbins RJ, Spencer CA, Braverman LE, Pacini F, Wartofsky L, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003;88(4):1433–41.

    Article  CAS  PubMed  Google Scholar 

  103. Pacini F, Capezzone M, Elisei R, Ceccarelli C, Taddei D, Pinchera A. Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J Clin Endocrinol Metab. 2002;87(4):1499–501.

    Article  CAS  PubMed  Google Scholar 

  104. Torlontano M, Crocetti U, D’Aloiso L, Bonfitto N, Di Giorgio A, Modoni S, et al. Serum thyroglobulin and 131I whole body scan after recombinant human TSH stimulation in the follow-up of low-risk patients with differentiated thyroid cancer. Eur J Endocrinol. 2003;148(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  105. Geerlings JA, van Zuijlen A, Lohmann EM, Smit JW, Stokkel MP. The value of I-131 SPECT in the detection of recurrent differentiated thyroid cancer. Nucl Med Commun. 2010;31(5):417–22.

    PubMed  Google Scholar 

  106. Spanu A, Solinas ME, Chessa F, Sanna D, Nuvoli S, Madeddu G. 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med. 2009;50(2):184–90.

    Article  PubMed  Google Scholar 

  107. Leboulleux S, Schroeder PR, Schlumberger M, Ladenson PW. The role of PET in follow-up of patients treated for differentiated epithelial thyroid cancers. Nat Clin Pract Endocrinol Metab. 2007;3(2):112–21.

    Article  PubMed  Google Scholar 

  108. Caetano R, Bastos CR, de Oliveira IA, da Silva RM, Fortes CP, Pepe VL, et al. Accuracy of positron emission tomography and positron emission tomography-CT in the detection of differentiated thyroid cancer recurrence with negative [131] I whole-body scan results: a meta-analysis. Head Neck. 2016;38(2):316–27.

    Article  PubMed  Google Scholar 

  109. Elboga U, Karaoglan H, Sahin E, Kalender E, Demir HD, Basibuyuk M, et al. F-18 FDG PET/CT imaging in the diagnostic work-up of thyroid cancer patients with high serum thyroglobulin, negative I-131 whole body scan and suppressed thyrotropin: 8-year experience. Eur Rev Med Pharmacol Sci. 2015;19(3):396–401.

    CAS  PubMed  Google Scholar 

  110. Agate L, Bianchi F, Giorgetti A, Sbragia P, Bottici V, Brozzi F, et al. Detection of metastases from differentiated thyroid cancer by different imaging techniques [neck ultrasound, computed tomography and [18F]-FDG positron emission tomography] in patients with negative post-therapeutic [1][3][1]I whole-body scan and detectable serum thyroglobulin levels. J Endocrinol Investig. 2014;37(10):967–72.

    Article  CAS  Google Scholar 

  111. Haslerud T, Brauckhoff K, Reisaeter L, Kufner-Lein R, Heinecke A, Varhaug JE, et al. F18-FDG-PET for recurrent differentiated thyroid cancer: a systematic meta-analysis. Acta Radiol. 2016;57(10):1193–200.

    Article  PubMed  Google Scholar 

  112. Ciarallo A, Marcus C, Taghipour M, Subramaniam RM. Value of fluorodeoxyglucose PET/computed tomography patient management and outcomes in thyroid cancer. PET Clin. 2015;10(2):265–78.

    Article  PubMed  Google Scholar 

  113. Plotkin M, Hautzel H, Krause BJ, Schmidt D, Larisch R, Mottaghy FM, et al. Implication of 2-18fluor-2-deoxyglucose positron emission tomography in the follow-up of Hurthle cell thyroid cancer. Thyroid. 2002;12(2):155–61.

    Article  PubMed  Google Scholar 

  114. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91(2):498–505.

    Article  CAS  PubMed  Google Scholar 

  115. Masson-Deshayes S, Schvartz C, Dalban C, Guendouzen S, Pochart JM, Dalac A, et al. Prognostic value of [18]F-FDG PET/CT metabolic parameters in metastatic differentiated thyroid cancers. Clin Nucl Med. 2015;40(6):469–75.

    Article  PubMed  Google Scholar 

  116. Deandreis D, Al Ghuzlan A, Leboulleux S, Lacroix L, Garsi JP, Talbot M, et al. Do histological, immunohistochemical, and metabolic [radioiodine and fluorodeoxyglucose uptakes] patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer. 2011;18(1):159–69.

    Article  CAS  PubMed  Google Scholar 

  117. Ranade R, Kand P, Basu S. Value of 18F-FDG PET negativity and Tg suppressibility as markers of prognosis in patients with elevated Tg and 131I-negative differentiated thyroid carcinoma [TENIS syndrome]. Nucl Med Commun. 2015;36(10):1014–20.

    Article  CAS  PubMed  Google Scholar 

  118. Piccardo A, Puntoni M, Bertagna F, Treglia G, Foppiani L, Arecco F, et al. [1][8]F-FDG uptake as a prognostic variable in primary differentiated thyroid cancer incidentally detected by PET/CT: a multicentre study. Eur J Nucl Med Mol Imaging. 2014;41(8):1482–91.

    Article  CAS  PubMed  Google Scholar 

  119. Lapa C, Werner RA, Schmid JS, Papp L, Zsoter N, Biko J, et al. Prognostic value of positron emission tomography-assessed tumor heterogeneity in patients with thyroid cancer undergoing treatment with radiopeptide therapy. Nucl Med Biol. 2015;42(4):349–54.

    Article  CAS  PubMed  Google Scholar 

  120. Dienstmann R, Lassen U, Cebon J, Desai J, Brown MP, Evers S, et al. First-in-man dose-escalation study of the selective BRAF inhibitor RG7256 in patients with BRAF V600-mutated advanced solid tumors. Target Oncol. 2016;11(2):149–56.

    Article  PubMed  Google Scholar 

  121. Marotta V, Ramundo V, Camera L, Del Prete M, Fonti R, Esposito R, et al. Sorafenib in advanced iodine-refractory differentiated thyroid cancer: efficacy, safety and exploratory analysis of role of serum thyroglobulin and FDG-PET. Clin Endocrinol. 2013;78(5):760–7.

    Article  CAS  Google Scholar 

  122. Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 2010;16(21):5260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Boerner AR, Petrich T, Weckesser E, Fricke H, Hofmann M, Otto D, et al. Monitoring isotretinoin therapy in thyroid cancer using 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  124. Versari A, Sollini M, Frasoldati A, Fraternali A, Filice A, Froio A, et al. Differentiated thyroid cancer: a new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid. 2014;24(4):715–26.

    Article  CAS  PubMed  Google Scholar 

  125. Leboulleux S, Schroeder PR, Busaidy NL, Auperin A, Corone C, Jacene HA, et al. Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab. 2009;94(4):1310–6.

    Article  CAS  PubMed  Google Scholar 

  126. Ma C, Xie J, Lou Y, Gao Y, Zuo S, Wang X. The role of TSH for 18F-FDG-PET in the diagnosis of recurrence and metastases of differentiated thyroid carcinoma with elevated thyroglobulin and negative scan: a meta-analysis. Eur J Endocrinol. 2010;163(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  127. Prestwich RJ, Viner S, Gerrard G, Patel CN, Scarsbrook AF. Increasing the yield of recombinant thyroid-stimulating hormone-stimulated 2-[18-fluoride]-flu-2-deoxy-D-glucose positron emission tomography-CT in patients with differentiated thyroid carcinoma. Br J Radiol. 2012;85(1018):e805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Van Nostrand D, Moreau S, Bandaru VV, Atkins F, Chennupati S, Mete M, et al. [124]I positron emission tomography versus [131]I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20(8):879–83.

    Article  PubMed  Google Scholar 

  129. Phan HT, Jager PL, Paans AM, Plukker JT, Sturkenboom MG, Sluiter WJ, et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(5):958–65.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jentzen W, Hoppenbrouwers J, van Leeuwen P, van der Velden D, van de Kolk R, Poeppel TD, et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med. 2014;55(11):1759–65.

    Article  CAS  PubMed  Google Scholar 

  131. Ota N, Kato K, Iwano S, Ito S, Abe S, Fujita N, et al. Comparison of [1][8]F-fluoride PET/CT, [1][8]F-FDG PET/CT and bone scintigraphy [planar and SPECT] in detection of bone metastases of differentiated thyroid cancer: a pilot study. Br J Radiol. 2014;87(1034):20130444.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Qiu ZL, Xue YL, Song HJ, Luo QY. Comparison of the diagnostic and prognostic values of 99mTc-MDP-planar bone scintigraphy, 131I-SPECT/CT and 18F-FDG-PET/CT for the detection of bone metastases from differentiated thyroid cancer. Nucl Med Commun. 2012;33(12):1232–42.

    Article  CAS  PubMed  Google Scholar 

  133. Kundu P, Lata S, Sharma P, Singh H, Malhotra A, Bal C. Prospective evaluation of [68]Ga-DOTANOC PET-CT in differentiated thyroid cancer patients with raised thyroglobulin and negative [131]I-whole body scan: comparison with [18]F-FDG PET-CT. Eur J Nucl Med Mol Imaging. 2014;41(7):1354–62.

    Article  CAS  PubMed  Google Scholar 

  134. Nakajo M, Nakajo M, Jinguji M, Tani A, Kajiya Y, Tanabe H, et al. Diagnosis of metastases from postoperative differentiated thyroid cancer: comparison between FDG and FLT PET/CT studies. Radiology. 2013;267(3):891–901.

    Article  PubMed  Google Scholar 

  135. Sohn SY, Choi JH, Kim NK, Joung JY, Cho YY, Park SM, et al. The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid. 2014;24(5):872–7.

    Article  CAS  PubMed  Google Scholar 

  136. Padovani RP, Kasamatsu TS, Nakabashi CC, Camacho CP, Andreoni DM, Malouf EZ, et al. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid. 2012;22(9):926–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hoang JK, Vanka J, Ludwig BJ, Glastonbury CM. Evaluation of cervical lymph nodes in head and neck cancer with CT and MRI: tips, traps, and a systematic approach. AJR Am J Roentgenol. 2013;200(1):W17–25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Daniel Oldan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Oldan, J.D., Hoang, J., Wong, T.Z. (2017). Imaging Modalities in the Diagnosis of Recurrent or Metastatic Thyroid Cancer. In: Mancino, A., Kim, L. (eds) Management of Differentiated Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-54493-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54493-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54492-2

  • Online ISBN: 978-3-319-54493-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics