Skip to main content

Advertisement

Log in

Varying growth rates in bamboo corals: sclerochronology and radiocarbon dating of a mid-Holocene deep-water gorgonian skeleton (Keratoisis sp.: Octocorallia) from Chatham Rise (New Zealand)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

A branched mid-Holocene bamboo coral skeleton of the isidid gorgonian genus Keratoisis (Octocorallia) recovered at southwestern Chatham Rise (New Zealand) from an average water depth of 680 m is described with respect to sclerochronology and age determination. Growth rates of the Mg-calcitic internodal increments were investigated by the counting of colour bands and radiocarbon dating. Growth banding is produced by varying orientations of crystal fan bundles towards the image plane. The skeleton shows three growth interruptions, which are documented in all branches. AMS 14C ages decrease from base to top of the trunk and from the central axes to the margins of the branches, documenting a simultaneous vertical and lateral growth. The data provide a maximum age of 3,975 ± 35 years BP, and a record spanning 240 ± 35 years. While calculated longitudinal growth rates amount to an average of 5 mm year−1 during a 55-year record, average lateral linear extension rates of 0.4 mm year−1 are an order of magnitude lower, still allowing for a seasonal to annual resolution of colour bands on a macroscopic scale and for a daily to monthly resolution on microscales of individual crystal generations to fascicle bundles. Hence, the isidid skeleton provides a high-resolution archive of paleoceanographic dynamics in deeper water masses. Concentric incremental accretion around the central axis in the early growth stages changed into a unilaterally asymmetric growth during late-stage evolution, probably triggered by the establishment of a stable system of unidirectional currents and nutrient flux. While colour band counts, related to the AMS 14C ages, support a seasonal to annual accretion of macroscopic growth bands in the inner concentric and complete outer parts of the skeleton, incremental growth rates at the condensed side are highly variable, as documented by hiatuses and unconformities. Thus the specimen proves that growth rates of bamboo corals may vary within individual skeletons and strongly deviate from the annual mode, hence showing implications on paleoceanographic proxy analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adkins JF, Henderson GM, Wang S-L, O´Shea S, Mokadem F (2004) Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet Sci Lett 227:481–490

    Article  Google Scholar 

  • Allemand D, Ferrier-Pagès C, Furla P, Houlbrèue F, Puverel S, Reynaud S, Tambutté E, Tambutté S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. C R Palevol 3:453–467

    Article  Google Scholar 

  • Al-Rousan S, Al-Moghrabi S, Pätzold J, Wefer G (2003) Stable oxygen isotopes in Porites corals monitor weekly temperature variations in the northern Gulf of Aqaba, Red Sea. Coral Reefs 22:346–356

    Article  Google Scholar 

  • Andrews AH, Cordes EE, Mahoney MM, Munk K, Coale KH, Cailliet GM., Heifetz J (2002) Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471:101–110

    Article  Google Scholar 

  • Andrews AH, Cailliet GM, Kerr LA, Coale KH, Lundstrom C, DeVogelaere AP (2005) Investigations of age and growth for three deep-sea corals from the Davidson Seamount off central California. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 1021–1038

    Chapter  Google Scholar 

  • Auster PJ, Langton RW (1999) The effects of fishing on fish habitat. In: Benaka L (ed) Fish habitat: essential fish habitat and rehabilitation. Am Fish Soc Symp 22:150–187

    Google Scholar 

  • Barnes DJ, Lough JM (1996) Coral skeletons: storage and recovery of environmental information. Glob Chang Biol 2:569–582

    Article  Google Scholar 

  • Cheng HJ, Adkins JF, Edwards RL, Boyle EA (2000) U–Th dating of deep-sea corals. Geochim Cosmochim Acta 64:2401–2416

    Article  Google Scholar 

  • Chiswell SM (2002) Temperature and salinity mean and variability within the Subtropical Front over Chatham Rise, New Zealand. N Z J Mar Freshw Res 36:281–298

    Article  Google Scholar 

  • Cohen AL, Layne GD, Hart SR (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16:20–26

    Article  Google Scholar 

  • Cohen AL, McConnaughey TA (2003) A geochemical perspective on coral mineralization. In: Dove M, Weiner S, de Yoreo J (eds) Biomineralization. Rev Mineral Geochem 54:151–187

  • Cohen AL, Smith SR, McCartney MS, van Etten J (2004) How brain corals record climate: an integration of skeletal structure, growth and chemistry of Diploria labyrinthiformis from Bermuda. Mar Ecol Prog Ser 271:147–158

    Article  Google Scholar 

  • Cooke JP, Nelson CS, Crundwell MP, Spiegler D (2002) Bolboforma as monitors of Cenozoic palaeoeanographic changes in the Southern Ocean. Palaeogeogr Paleoclimatol Palaeoecol 188:73–100

    Article  Google Scholar 

  • Druffel ERM, King LL, Belastock RA, Buesseler KO (1990) Growth rate of a deep-sea coral using 210Pb and other isotopes. Geochim Cosmochim Acta 54:1493–1500

    Article  Google Scholar 

  • Druffel ERM, Griffin S, Witter A, Nelson E, Southon J, Kashgarian M, Vogel J (1995) Gerardia: Bristlecone pine of the deep-sea? Geochim Cosmochim Acta 59:5031–5036

    Article  Google Scholar 

  • Druffel ERM (1997) Geochemistry of corals: proxies of past ocean chemistry, ocean circulation, and climate. Proc Natl Acad Sci USA 94:8354–8361

    Article  Google Scholar 

  • Emiliani C, Hudson JH, Shinn EA, George RY (1978) Oxygen and carbon isotope growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science 202:627–629

    Article  Google Scholar 

  • Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billet D, Hebbeln D, Jøergensen BB, Schlüter M, Van Weering T (eds) Ocean margin systems. Springer, Heidelberg, pp 365–385

    Google Scholar 

  • Freiwald A, Fossa JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water coral reefs: out of sight—no longer out of mind. UNEP-WCMC Biodiversity Series 22, Cambridge, UK, 84 pp

  • Gill IP, Dickson JAD, Hubbard DK (2006) Daily banding in corals: implications for paleoclimatic reconstruction an skleretonization. J Sediment Res 76:683–688

    Article  Google Scholar 

  • Goreau TJ (1977) Carbon metabolism in calcifying and photosynthetic organisms: theoretical models based on stable isotope data. In: Proceedings of the 3rd International Coral Reef Symposium, Miami, FL, September 1979, pp 395–401

  • Graf G (1992) Benthic-pelagic coupling: a benthic view. Oceanogr Mar Biol Ann Rev 30:149–190

    Google Scholar 

  • Grant R (1976) The marine fauna of New Zealand: Isididae (Octocorallia: Gorgonacea) from New Zealand and the Antarctic. Biodiversity Memoirs 66, New Zealand Oceanographic Institute, Wellington, 56 pp

    Google Scholar 

  • Grasshoff M, Zibrowius H (1983) Kalkkrusten auf Achsen von Hornkorallen, rezent und fossil. Senckenbergiana Marit 15:111–145

    Google Scholar 

  • Griffin S, Druffel ERM (1989) Sources of carbon to deep-sea corals. Radiocarbon 55:533–542

    Google Scholar 

  • Heikoop JM, Hickmott DD, Risk MJ, Shearer CK, Atudorei V (2002) Potential climate signals from the deep-sea gorgonian coral Primnoa resedaeformis. Hydrobiologia 471:117–124

    Article  Google Scholar 

  • Hughen KA, Baillie MGL, Bard E, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer PJ, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1059–1086

    Google Scholar 

  • Knutson RA, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272

    Article  Google Scholar 

  • Libes SM (1992) An introduction to marine biogeochemistry. Wiley, New York, 734 pp

    Google Scholar 

  • Lomitschka M, Mangini A (1999) Precise Th/U-dating of small and heavily coated samples of deep sea corals. Earth Planet Sci Lett 170:391–401

    Article  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford, 198 pp

    Google Scholar 

  • Mortensen PB, Buhl-Mortensen L (2005) Morphology and growth of the deep-water gorgonians Primnoa resedaeformis and Paragorgia arborea. Mar Biol 147:775–788

    Article  Google Scholar 

  • Nadeau MJ, Grootes PM, Schleicher M, Hasselberg P, Rieck A, Bitterling M (1998) Sample throughout and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40 (Part 1, Spec Issue):239–245

    Google Scholar 

  • Nelson CS, Cooke PJ, Hendy CH, Cuthbertson AM (1993) Oceanographic and climate changes over the past 160,000 years at Deep Sea Drilling Project Site 594 off southeastern New Zealand, southwest Pacific ocean. Paleoceanography 8:435–458

    Article  Google Scholar 

  • Nodder SD, Northcote LC (2001) Episodic particulate fluxes at southern temperate mid-latitudes (42–45°S) in the Subtropical Front region, east of New Zealand. Deep-Sea Res I 48:833–864

    Article  Google Scholar 

  • Noé SU, Dullo W-Chr (2006) Skeletal morphogenesis and growth mode of modern and fossil deep-water isidid gorgonians (Octocorallia) in the West Pacific (New Zealand and Sea of Okhotsk). Coral Reefs 25:303–320

    Article  Google Scholar 

  • Noé S, Lembke-Jene L, Reveillaud J, Freiwald A (2007) Microstructure, growth banding and age determination of a primnoid gorgonian skeleton (Octocorallia) from the late Younger Dryas to earliest Holocene of the Bay of Biscay. Facies 53:177–188

    Article  Google Scholar 

  • Risk MJ, Heikoop JM, Snow MG, Beukens R (2002) Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125–131

    Article  Google Scholar 

  • Roark EB, Guilderson TP, Flood-Page S, Dunbar RB, Ingram BL, Fallon SJ, McCulloch M (2005) Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska. Geophys Res Lett 32:L04606. doi: 10.1029/2004GL01919

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  Google Scholar 

  • Sánchez JA, Tracey D, Neil H, Marriott P (2004) Coral rings in the deep ocean: using SEM to date New Zealand′s bamboo corals. Water Atmos 12(4):22–23

    Google Scholar 

  • Sherwood OA, Scott DB, Risk MJ, Guilderson TP (2005) Radiocarbon evidence for annual growth rings in the deep-sea octocoral Primnoa resedaeformis. Mar Ecol Prog Ser 301:129–134

    Article  Google Scholar 

  • Sikes EL, Samson CR, Guilderson TP, Howard WR (2000) Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405:555–559

    Article  Google Scholar 

  • Sinclair DJ, Sherwood OA, Risk MJ, Hillaire-Marcel C, Tubrett M, Sylvester P, McCulloch M, Kinsley L (2005) Testing the reproducibility of Mg/Ca profiles in the deep-water coral Primnoa resedaeformis: putting the proxy through its paces. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 1039–1060

    Chapter  Google Scholar 

  • Stuiver M, Polach HA (1977) Radiocarbon. 1977 Discussion reporting on 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Stuiver M, Reimer PJ (1993) CALIB Radiocarbon Calibration Program. Radiocarbon 35:215–230

    Google Scholar 

  • Thresher R, Rintoul SR, Koslow JA, Weidman C, Adkins J, Proctor C (2004) Oceanic evidence of climatic change in southern Australia over the last three centuries. Geophys Res Lett 31:L0212. doi: 10.1029/2003GL018869

    Article  Google Scholar 

  • Tracey D, Neil H, O´Shea S, Gordon D (2003) Chronicles of the deep: ageing deep-sea corals in New Zealand waters. Water Atmos 11(2):22–24

    Google Scholar 

  • Tracey DM, Neil H, Marriott P, Andrews AH, Cailliet GM, Sánchez JA (2007) Age and growth of two genera of deep-sea bamboo corals (Family Isididae) in New Zealand waters. In: Proceedings of the 3rd ISDSC, Miami, FL, 28 Nov–2 Dec 2005

  • Weaver PE, Carter L, Neil HL (1998) Response of surface water masses and circulation of late Quaternary climate change east of New Zealand. Paleoceanography 13:70–83

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the German Research Foundation (DFG) for substantial support through the Leibniz Award (Du 129/33) and the German Federal Ministry of Education and Science (BMBF) for the SO168 grant. We are indebted to Prof. Dr. P. M. Grootes and his team (Leibniz Labor for Age Determination and Isotope Research Kiel) for radiocarbon measurements, D. Dettmar (Bochum) for thin section preparation, and Dr. B. Bader and U. Schuldt (Department of Geosciences, CAU Kiel) for their support in the SEM lab. Fruitful discussions with Prof. Dr. A. Freiwald (Institute of Paleontology, University of Erlangen-Nuremberg) and two anonymous reviewers helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. U. Noé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noé, S.U., Lembke-Jene, L. & Dullo, WC. Varying growth rates in bamboo corals: sclerochronology and radiocarbon dating of a mid-Holocene deep-water gorgonian skeleton (Keratoisis sp.: Octocorallia) from Chatham Rise (New Zealand). Facies 54, 151–166 (2008). https://doi.org/10.1007/s10347-007-0129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-007-0129-x

Keywords

Navigation