Skip to main content
Log in

Beyond average: an experimental test of temperature variability on the population dynamics of Tribolium confusum

  • Original Article
  • Published:
Population Ecology

Abstract

The relationship between ectotherm ecology and climatic conditions has been mainly evaluated in terms of average conditions. Average temperature is the more common climatic variable used in physiological and population studies, and its effect on individual and population-level processes is well understood. However, the intrinsic variability of thermal conditions calls attention to the potential effects that this variability could have in ecological systems. Regarding this point, two hypotheses are proposed. From the allocation principle, it may be inferred that if temperature variability is high enough to induce stress in the organisms, then this extra-cost should reduce the energetic budget for reproduction, which will be reflected in population parameters. Moreover, a mathematical property of non-linear functions, Jensen’s inequality, indicates that, in concave functions, like the temperature–reproduction performance function, variability reduces the expected value of the output variable, and again modifies population parameters. To test these hypotheses, experimental cultures of Tribolium confusum under two different thermal variability regimens were carried out. With these data, we fitted a simple population dynamics model to evaluate the predictions of our hypothesis. The results show that thermal variability reduces the maximum reproductive rate of the population but no other parameters such as carrying capacity or the nonlinear factor in a nonlinear version of the Ricker model, which confirms our hypotheses. This result has important consequences, such as the paradoxical increase in population variability under a decrease in thermal variability and the necessary incorporation of climatic variability to evaluate the net effect of climate change on the dynamics of natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrewartha HC, Birch LC (1954) The abundance and distribution of animals. Chicago University Press, Chicago

    Google Scholar 

  • Bale J, Masters G, Hodkinson I, Awmack C, Bezemer T, Brown V, Butterfield J, Buse A, Coulson J, Farrar J, Good J, Harrington R, Hartley S, Jones T, Lindroth R, Press M, Symrnioudis I, Watt A, Whittaker J (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol 8:1–16

    Article  Google Scholar 

  • Berryman AA (1999) Principles of population dynamics and their application. Stanley Thornes, Cheltenham, UK

    Google Scholar 

  • Cammell M, Knight J (1992) Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res 22:117–162

    Article  Google Scholar 

  • Cannon R (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biol 4:785–796

    Article  Google Scholar 

  • Chown SL, Gaston KJ (1999) Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biol Rev 74:87–120

    Article  Google Scholar 

  • Cody ML (1966) A general theory of clutch size. Evolution 20:174–184

    Article  Google Scholar 

  • Crozier L, Dwyer G (2006) Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am Nat 167:853–866

    Article  Google Scholar 

  • Davidson J, Andrewartha HG (1948) The influence of rainfall, evaporation and atmospheric temperature on fluctuations in the size of a natural population of Thrips imaginis (Thysanoptera). J Anim Ecol 17:200–222

    Article  Google Scholar 

  • Desharnais RA, Costantino RF (1982) The approach to equilibrium and the steady-state probability distribution of adult numbers in Tribolium brevicornis. Am Nat 119:102–111

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672

    Article  CAS  PubMed  Google Scholar 

  • Dukes J, Pontius J, Orwig D, Garnas J, Rodgers V, Brazee N, Cooke B, Theoharides K, Stange E, Harrington R, Ehrenfeld J, Gurevitch J, Lerdau M, Stinson K, Wick R, Ayres M (2009) Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Can J For Res 39:231–248

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Elias S (1991) Insects and climate change. Bioscience 41:552–559

    Article  Google Scholar 

  • Estay SA, Lima M, Labra FA (2009a) Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modelling. J App Entomol 133:491–499

    Article  Google Scholar 

  • Estay SA, Lima M, Harrington R (2009b) Climate mediated exogenous forcing and synchrony in populations of the oak aphid in the UK. Oikos 118:175–182

    Article  Google Scholar 

  • Folguera G, Bastías DA, Bozinovic F (2009) Impact of experimental thermal amplitude on ectotherm performance: adaptation to climate change variability? Comp Biochem Physiol A 154:389–393

    Article  Google Scholar 

  • Frazier MR, Huey RB, Berrigan D (2006) Thermodynamics constrains the evolution of insect population growth rates: “warmer is better”. Am Nat 168:512–520

    Article  CAS  PubMed  Google Scholar 

  • Harrington R, Woiwod IP (1995) Insect crop pests and the changing climate. Weather 50:200–208

    Google Scholar 

  • Harrington R, Bale JS, Tatchell GM (1995) Aphids in a changing climate. In: Harrington R, Stork N (eds) Insects in a changing environment. Harcourt Brace, New York, pp 126–155

    Google Scholar 

  • Harrington R, Clark S, Welham S, Verrier P, Denholm C, Hulle M, Maurice D, Rounsevell M, Cocu NEG (2007) Environmental change and the phenology of European aphids. Global Change Biol 13:1550–1564

    Article  Google Scholar 

  • Hering D, Schmidt-Kloiber A, Murphy J, Lucke S, Zamora-Munoz C, Lopez-Rodriguez M, Huber T, Graf W (2009) Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat Sci 71:3–14

    Article  Google Scholar 

  • Howe RW (1965) A summary of estimates of optimal and minimal conditions for population increase of some stored products insects. J Stored Prod Res 1:177–184

    Article  Google Scholar 

  • Huey RB, Berrigan D (2001) Temperature, demography, and ectotherm fitness. Am Nat 158:204–210

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL (1906) Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math-Djursholm 30:175–193 (in French)

    Article  Google Scholar 

  • Ji X, Gao J, Han J (2007) Phenotypic responses of hatchlings to constant versus fluctuating incubation temperatures in the multi-banded krait, Bungarus multicintus (Elapidae). Zool Sci 24:384–390

    Article  PubMed  Google Scholar 

  • Johnston IA, Bennett AF (1996) Animals and temperature: phenotypic and evolutionary adaptation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Katz RW, Brush GS, Parlange MB (2005) Statistics of extremes: modeling ecological disturbances. Ecology 86:1124–1134

    Article  Google Scholar 

  • Keith DA, Akçakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Regan HM, Araújo MB, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4:560–563

    Article  PubMed  Google Scholar 

  • Lawton JH (1991) From physiology to population dynamics and communities. Funct Ecol 5:155–161

    Article  Google Scholar 

  • Levins R (1968) Evolution in changing environments. Princeton University Press, New Jersey

    Google Scholar 

  • Lima M, Harrington R, Saldana S, Estay S (2008) Non-linear feedback processes and a latitudinal gradient in the climatic effects determine green spruce aphid outbreaks in the UK. Oikos 117:951–959

    Article  Google Scholar 

  • Martin TL, Huey RB (2008) Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat 171:E102–E118

    Article  PubMed  Google Scholar 

  • Martinat PJ (1987) The role of climatic variation and weather in forest insect outbreaks. In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic, San Diego, pp 241–268

    Google Scholar 

  • May RM (1974) Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186:645–647

    Article  CAS  PubMed  Google Scholar 

  • May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467

    Article  CAS  PubMed  Google Scholar 

  • Metcalf CJ, Pavard S (2007) Why evolutionary biologists should be demographers. Trends Ecol Evol 22:205–212

    Article  PubMed  Google Scholar 

  • Orcutt JD Jr, Porter KG (1983) Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol Oceanogr 28:720–730

    Article  Google Scholar 

  • Park T (1934) Observations on the general biology of the flour beetle, Tribolium confusum. Q Rev Biol 9:36–54

    Article  Google Scholar 

  • Park T (1954) Experimental studies of interspecies competition II. Temperature, humidity, and competition in two species of Tribolium. Physiol Zool 27:177–238

    Google Scholar 

  • Park T, Frank MB (1948) The fecundity and development of the flour beetles, Tribolium confusum and Tribolium castaneum, at three constant temperatures. Ecology 29:368–374

    Article  Google Scholar 

  • Pétavy G, David JR, Debat V, Gibert P, Moreteau B (2004) Specific effects of cycling stressful temperatures upon phenotypic and genetic variability of size traits in Drosophila melanogaster. Evol Ecol Res 6:873–890

    Google Scholar 

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climatic change on agricultural insect pests. Agric For Meteorol 57:221–240

    Article  Google Scholar 

  • Ragland GJ, Kingsolver JG (2008) The effect of fluctuating temperatures on ectotherm life-history traits: comparisons among geographic populations of Wyeomyia smithii. Evol Ecol Res 10:29–44

    Google Scholar 

  • Ricker WE (1958) Handbook of computations for biological statistics of fish populations. Can Fish Res Board Bull 119:300

    Google Scholar 

  • Royama T (1992) Analytical population dynamics. Chapman & Hall, London

    Google Scholar 

  • Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14:361–366

    Article  PubMed  Google Scholar 

  • Saldana S, Lima M, Estay S (2007) Northern Atlantic Oscillation effects on the temporal and spatial dynamics of green spruce aphid populations in the UK. J Anim Ecol 76:782–789

    Article  PubMed  Google Scholar 

  • Sinclair BJ, Vernon P, Jaco Klok C, Chown SL (2003) Insects at low temperatures: an ecological perspective. Trends Ecol Evol 18:257–262

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2008) Climate change 2007: the physical science basis; contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Spicer JI, Gaston KJ (1999) Physiological diversity and its ecological implications. Blackwell, Oxford

    Google Scholar 

  • Travis J, Futuyma DJ (1993) Global change: lessons from and for evolutionary biology. In: Kareiva P, Kingsolver JG, Huey RB (eds) Biotic interactions and global change. Sinauer, Mass., pp 251–263

    Google Scholar 

  • Utida S (1941) Studies on experimental population of the azuki bean weevil. Callosobruchus chinensis (L.). I. The effect of population density on the progeny populations. Mem Coll Sci Kyoto Univ 48:1–30

    Google Scholar 

  • Uvarov BP (1931) Insects and climate. Trans R Entomol Soc Lond 79:1–232

    Article  Google Scholar 

  • Volney W, Fleming R (2000) Climate change and impacts of boreal forest insects. Agric Ecosyst Environ 82:283–294

    Article  Google Scholar 

  • White ND (1995) Insects, mites and insecticides in stored grain ecosystems. In: Jayas DS, White ND, Muir WE (eds) Stored grain ecosystems. CRC Press, Florida, pp 123–168

    Google Scholar 

  • Whittaker J (1999) Impacts and responses at population level of herbivorous insects to elevated CO2. Eur J Entomol 96:149–156

    Google Scholar 

  • Worner SP (1992) Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Environ Entomol 21:689–699

    Google Scholar 

Download references

Acknowledgments

Funded by FONDAP 1501-0001 CASEB (Programs 1 and 2). FB acknowledges to LINC-Global. SC acknowledges a CONICYT graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. Estay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estay, S.A., Clavijo-Baquet, S., Lima, M. et al. Beyond average: an experimental test of temperature variability on the population dynamics of Tribolium confusum . Popul Ecol 53, 53–58 (2011). https://doi.org/10.1007/s10144-010-0216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-010-0216-7

Keywords

Navigation