Skip to main content
Log in

Interactions between ants and aphidophagous and coccidophagous ladybirds

  • Review
  • Special feature: predatory ladybirds: individuals, populations, and interactions
  • Published:
Population Ecology

Abstract

Aphidophagous and coccidophagous coccinellids come into conflict with homopteran-tending ants for access to food. Antagonistic interactions between coccinellids and ants may be competitive or non-competitive. Competitive interactions occur when coccinellids attack aphids or coccids that are being tended by ants for honeydew. Non-competitive interactions include all interactions away from ant-tended homopteran colonies. We here review observations and studies of such interactions. We note that most competitive interactions occur at times when untended aphids/coccids are scarce. We describe the chemical and physical defences that coccinellids use against ant aggression and consider whether these have evolved as general anti-predator deterrents or specifically in response to ants. Myrmecophilous coccinellids are then considered, with particular focus on the two most studied species, Coccinella magnifica and Platynaspis luteorubra. We note that the myrmecophily of the two species has the same adaptive rationale—to enable the ladybirds to prey on ant-tended aphids at times of aphid scarcity—but that it is based on different traits to facilitate life with ants. Finally, we consider the role of ants in the evolution of habitat specialisation in some coccinellids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addicott JF (1979) A multispecies aphid-ant association: density dependence and species–specific effects. Can J Zool 57:558–569

    Article  Google Scholar 

  • Agarwala BK Dixon AFG (1992) Laboratory study of cannibalism and interspecific predation in ladybirds. Ecol Entomol 17:303–309

    Google Scholar 

  • Attygalle AB, McCormick KD, Blankespoor CL, Eisner T, Meinwald J (1993a) Azamacrolides: a family of alkaloids from the pupal defensive secretion of a ladybird beetle (Epilachna varivestis). Proc Natl Acad Sci USA 90:5204–5208

    CAS  Google Scholar 

  • Attygalle AB, Xu S-C, McCormick KD, Meinwald J (1993b) Alkaloids of the Mexican bean beetle, Epilachna varivestis (Coccinellidae). Tetrahedron 49:9333–9342

    CAS  Google Scholar 

  • Bach CE (1991) Direct and indirect interactions between ants (Pheidole megacephala), scales (Coccus viridis) and plants (Pluchea indica). Oecologia 87:233–239

    Google Scholar 

  • Banks CJ (1958) Effects of the ant Lasius niger (L.), on the behaviour and reproduction of the black bean aphid, Aphis fabae Scop. Bull Entomol Res 49:701–714

    Google Scholar 

  • Banks CJ (1962) Effects of the ant Lasius niger (L.) on insects preying on small populations of Aphis fabae (Scop.) on bean plants. Ann Appl Biol 50:669–679

    Article  Google Scholar 

  • Banks CJ, Macaulay EDM (1967) Effects of Aphis fabae Scop. And of its attendant ants and insect predators on yields of field beans (Vicia faba L.). Ann Appl Biol 60:445–453

    Google Scholar 

  • Bartlett BR (1961) The influence of ants upon parasites, predators and scale insects. Ann Entomol Soc Am 54:543–551

    Google Scholar 

  • Berti N, Boulard M, Duverger C (1983) Fourmis et Coccinelles: revue bibliographique et observations nouvelles. Bull Soc Entomol Fr 88:271–275

    Google Scholar 

  • Bhatkar AP (1982) Orientation and defense of ladybeetles (Coleophera: Coccinellidae), following ant trail in search of aphids. Folia Entomol Mex 53:75–85

    Google Scholar 

  • Bradley GA (1973) Effect of Formica obscuripes (Hymenoptera: Formicidae) on the predator-prey relationship between Hyperaspis congressis (Coleoptera: Coccinellidae) and Toumeyella numismaticum (Homoptera: Coccidae). Can Entomol 105:1113–1118

    Google Scholar 

  • Bradley GA, Hinks JD (1968) Ants, aphids and jack pine in Manitoba. Can Entomol 100:40–50

    Article  Google Scholar 

  • Brakefield PM (1985) Polymorphic Müllerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biol J Linn Soc 26:243–267

    Google Scholar 

  • Bristow CM (1984) Differential benefits from ant attendance to two species of Homoptera on New York Ironweed. J Anim Ecol 53:715–726

    Google Scholar 

  • Carroll CR, Janzen DH (1973) Ecology of foraging by ants. Annu Rev Ecol Syst 4:231–257

    Google Scholar 

  • Chapin EA (1966) A new species of myrmecophilous Coccinellidae, with notes on the other Hyperaspini (Coleoptera). Psyche 73:278–283

    Google Scholar 

  • Corbara B, Dejean A, Cerdan P (1999) Une coccinelle myrmecophile associée à la fourmi arboricole Dolichoderus bidens (Dolichoderinae). Actes Coll Ins Soc 12:171–179

    Google Scholar 

  • Daloze D, Braekman J-C, Pasteels JM (1995) Ladybird defence alkaloids: structural, chemotaxonomic and biosynthetic aspects (Col.: Coccinellidae). Chemoecology 5/6:173–183

    Google Scholar 

  • DeBach P, Fleschner CA, Dietrick EJ (1951) A biological check methoid for evaluating the effectiveness of entomophagous insects. J Econ Entomol 44:763–766

    Google Scholar 

  • Dechene R (1970) Studies of some behavioural patterns of Iridomyrmex humilis Mayr (Formicidae, Dolichoderinae). Wasmann J Biol 28:175–184

    Google Scholar 

  • Disney RHL, Majerus MEN, Walpole M (1994) Phoridea (Diptera) parasitising Coccinellidae (Coleoptera). Entomologist 113:28–42

    Google Scholar 

  • Dixon AFG (1970) Quality and availability of food for a sycamore aphid population. Symp Br Ecol Soc 10:271–287

    Google Scholar 

  • Dixon AFG (1998) Aphid Ecology, 2nd edition. Blackie, Glasgow

    Google Scholar 

  • Dixon AGF (2000) Insect predator-prey dynamics: ladybird beetles and biological control. Cambridge University Press, Cambridge

    Google Scholar 

  • Donisthorpe HStJK (1919–1920) The myrmecophilous ladybird Coccinella distincta, Fald., its life history and association with ants. Entomol Rec J Var 32:1–3

    Google Scholar 

  • Eisner T, Eisner M (1992) Operation and defensive role of “gin traps” in a coccinellid pupa (Cycloneda sanguinea). Psyche 99:265–274

    Google Scholar 

  • Eisner T, Hicks K, Eisner M (1978) “Wolf-in-sheep’s-clothing” strategy of a predaceous insect larva. Science 199:790–794

    PubMed  CAS  Google Scholar 

  • Eisner T, Goetz M, Anaeshansley D, Ferstandig-Arnold G, Meinwald J (1986) Defensive alkaloid in the blood of the Mexican bean beetle (Epilachna varivestis). Experimentia 42:204–207

    CAS  Google Scholar 

  • El-Ziady S (1960) Further effects of Lasius niger L. on Aphis fabae Scopoli. Proc R Entomol Soc Lond A 35:30–38

    Google Scholar 

  • El-Ziady S, Kennedy JS (1956) Beneficial effects of the common garden ant Lasius niger L., on the black bean aphid, Aphis fabae Scopoli. Proc R Entomol Soc Lond A 31:61–65

    Google Scholar 

  • Godeau J-F (1997) Adaptations à la cohabitation avec des fourmis: le cas de Coccinella magnifica Redtenbacher. Mémoire de D.E.A., Faculté des Sciences Agronomiques de Gembloux, 42 pp

  • Godeau J-F (2000) Coccinelles amies des fourmis. 2/2/ Groupe de Travail Coccinulla. Feuille de Contact 2:10–15

    Google Scholar 

  • Godeau J-F, Hemptinne J-L, Verhaeghe J-C (2003) Ant trail: a highway for Coccinella magnifica Redtenbacher (Coleoptera: Coccinellidae). In Soares AO, Ventura MA, Garcia V, Hemptinne J-L (eds) Proceedings of the 8th International Symposium on Ecology of Aphidophaga: Biology, Ecology and Behaviour of Aphidophagous Insects. Arquipélago: Life and Marine Sciences, Supplement 5 pp 79–83

  • Gordon RD (1985) The Coccinellidae (Coleoptera) of America North of Mexico. J NY Entomol Soc 93:1–912

    Google Scholar 

  • Happ GM, Eisner T (1961) Hemorrage in a Coccinellid beetle and its repellent effects on ants. Science 134:329–331

    PubMed  CAS  Google Scholar 

  • Harris RHTP (1921) A note on Ortalia pallens Muls. S Afr J Sci 17:170–171

    Google Scholar 

  • Hattingh V, Samways MJ (1992) Prey choice and substitution in Chilocorus spp. (Coleoptera: Coccinellidae). Bull Entomol Res 82:327–334

    Google Scholar 

  • Hays SB, Hays KL (1958) Food habits of Solenopsis saevissima richteri Forel. J Ecol Entomol 52:455–457

    Google Scholar 

  • Hemptinne J-L, Magro A, Majerus MEN (2005) Les Coccinelles. Delachaux et Niestlé, Paris

  • Hodek I (1996) Food Relationships. In: Hodek I, Honek A (eds) Ecology of Coccinellidae. Kluwer, Dortrecht, pp 143–238

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Holloway GJ, de Jong PW, Brakefield PM, de Vos H (1991) Chemical defense in ladybird beetles (Coccinellidae). I. Distribution of coccinelline and individual variation in defence in 7-spot ladybirds (Coccinella septempunctata). Chemoecology 2:7–14

    CAS  Google Scholar 

  • Holloway GJ, de Jong PW, Ottenheim M (1993) The genetics and cost of chemical defence in the 2-spot ladybird (Adalia bipunctata L.). Evolution 47:1229–1239

    Google Scholar 

  • Itioka T, Inoue T (1996) The role of predators and attendant ants in the regulation of a population of the citrus mealybug Pseudococcus citriculus in a Satsuma orange orchard. Appl Entomol Zool 31:195–202

    Google Scholar 

  • Jeffries MJ, Lawton JH (19849 Enemy free space and the structure of ecological communities. Biol J Linn Soc 23:269–286

    Google Scholar 

  • Jiggins C, Majerus MEN, Gough U (1993) Ant defence of colonies of Aphis fabae Scopoli (Hemiptera: Aphididae), against predation by ladybirds. Br J Entomol Nat Hist 6:129–138

    Google Scholar 

  • Jones TH, Blum MS (1983) Arthropod alkaloids: distribution, functions, and chemistry. In: Pelletier SW (ed) Alkaloids vol. 1, Chemical and biological perspectives. Wiley, New York pp 33–84

  • de Jong PW, Holloway GJ, Brakefield PM, de Vos H (1991) Chemical defence in ladybird beetles (Coccinellidae). II. Amount of reflex fluid, the alkaloid adaline and individual variation in defence in 2-spot ladybirds (Adalia bipunctata). Chemoecology 2:15–19

    Google Scholar 

  • Jutsum AR, Cherrett JM, Fisher M (1981) Interactions between the fauna of citrus trees in Trinidad and the ants Atta cephalotes and Azteca sp. J Appl Ecol 18:187–195

    Google Scholar 

  • Kovár I (1996) Phylogeny. In: Hodek I, Honek A (eds) Ecology of Coccinellidae. Kluwer, Dortrecht pp 19–31

    Google Scholar 

  • Liepert C, Dettner K (1996) Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants. J Chem Ecol 22:695–707

    CAS  Google Scholar 

  • MacKay WP (1983) Beetles associated with the harvester ants, Pogonomyrmex montanus, P. subnitidus and P. rugosus (Hymenoptera: Formicidae). Coleopt Bull 37:239–246

    Google Scholar 

  • Mahdi T, Whittaker JB (1993) Do birch trees (Betula pendula) grow better if foraged by wood ants? J Anim Ecol 62:101–116

    Google Scholar 

  • Majerus MEN (1989) Coccinella magnifica (Redtenbacher)—a myrmecophilous ladybird. Br J Entomol Nat Hist 2:97–106

    Google Scholar 

  • Majerus MEN (1993) Notes on the inheritance of a scarce form of the striped ladybird, Myzia oblongoguttata Linnaeus (Coleoptera: Coccinellidae). Entomol Rec J Var 105:271–278

    Google Scholar 

  • Majerus MEN (1994) Ladybirds. No. 81, New Naturalist Series. Harper Collins, London

    Google Scholar 

  • Majerus MEN, Majerus TMO (1997) Predation of ladybirds by birds in the wild. Entomol Mon Mag 133:55–61

    Google Scholar 

  • Mann WM (1911) On some northwestern ants and their guests. Psyche 18:102–109

    Google Scholar 

  • Mariau D, Julia JF (1977) Nouvelles rechérches sur la cochenille du cocotier Aspidotus destructor (Sign). Oléagineux 32:217–224

    CAS  Google Scholar 

  • Marples NM (1993) Is the alkaloid in 2 spot ladybirds (Adalia bipunctata) a defence against ant predation? Chemoecology 4:29–32

    CAS  Google Scholar 

  • Marples NM, Brakefield PM, Cowie RJ (1989) Differences between the 7-spot and 2-spot ladybird beetles (Coccinellidae) in their toxic effects on a bird predator. Ecol Entomol 14:79–84

    Google Scholar 

  • McLain DK (1980) Relationships among ants, aphids, and coccinellids on wild lettuce. J Georgia Entomol Soc 15:417–418

    Google Scholar 

  • Montgomery HWJr, Goodrich MA (2002) The Brachiacantha (Coleoptera: Coccinelllidae) of Illinois. Trans Ill State Acad Sci 95:111–130

    Google Scholar 

  • Moore BP, Brown WV, Rothschild M (1990) Methylalkylpyrazines in apoosematic insects, their hostplants and mimics. Chemoecology 1:43–51

    CAS  Google Scholar 

  • Morgan CL (1896) Habit and instinct. London

  • Muggleton J (1978) Selection against the melanic morphs of Adalia bipunctata (two-spot ladybird): a review and some new data. Heredity 40:269–280

    Google Scholar 

  • Oczenascheck C (1997) Chemische Ekologie der Entwicklungsstadien des Marienkaefers Platynaspis luteorubra Goeze. Unpublished diploma thesis, University of Bayreuth

  • Orivel J, Servigne P, Cerdan Ph, Dejean A, Corbara B (2004) The ladybird Thalassa saginata, an obligatory myrmecophile of Dolichoderus bidens ant colonies. Naturwissenschaften 91:97–100

    PubMed  CAS  Google Scholar 

  • Pasteels JM, Deroe C, Tursch B, Brakeman JC, Daloze D, Hootele C (1973) Distribution et activites des alcaloides défensifs des Coccinellidae. J Insect Physiol 19:1771–1784

    Google Scholar 

  • Pontin AJ (1959) Some records of predators and parasites adapted to attack aphids attended by ants. Entomol Mon Mag 95:154–155

    Google Scholar 

  • Pope RD (1979) Wax production by coccinellid larvae (Coleoptera). Syst Entomol 4:171–196

    Google Scholar 

  • Proksch P, Wite L, Wray V, Hartmann T (1993) Ontogenic variation of defensive alkaloids in the Mexican bean beetle Epilachna varivestis (Coleoptera: Coccinellidae). Entomol Gener 18:1–7

    Google Scholar 

  • Radford P, Attygalle AB, Meinwald J, Smedley SR, Eisner T (1997) Pyrrolidinooxazolidine alkaloids from two species of ladybird beetles. J Nat Prod 60:755–759

    PubMed  CAS  Google Scholar 

  • Rathcke B, Hamrum CL, Glass AW (1967) Observations of the interrelationships among ants and aphid predators. Mich Entomol 1:169–173

    Google Scholar 

  • Reimer NJ, Cope M-L, Yasuda G (1993) Interference of Pheidole megacephala (Hymenoptera: Formicidae) with biological control of Coccus viridis (Homoptera: Coccidae) in coffee. Environ Entomol 22:483–488

    Google Scholar 

  • Richards AM (1980) Defence adaptations and behaviour in Scymnodes lividigaster (Coleoptera: Coccinellidae). J Zool Lond 192:157–168

    Article  Google Scholar 

  • Richards AM (1985) Biology and defensive adaptations in Rodatus major (Coleoptera: Coccinellidae) and its prey, Monophlebus pilosior (Hemiptera: Margarodidae). J Zool Lond A 205:287–295

    Article  Google Scholar 

  • Rosen D (1990) (ed) Armoured scale insects: their biology, natural enemies and control. vol B Elsevier, Amsterdam

  • Rothschild M, Reichstein T (1976) Some problems associated with the storage of cardiac glycosides by insects. Nova Acta Leopoldina Supplement 7:507–550

    CAS  Google Scholar 

  • Schröder FC, Farmer JJ, Attygalle AB, Smedley SR, Eisner T, Meinwald J (1998) Combinatorial chemistry in insects: a library of defensive macrocyclic polyamines. Science 281:428–431

    PubMed  Google Scholar 

  • Seibert TF (1992) Mutualistic interactions of the aphid Lachnus allegheniensis (Homoptera: Aphididae) and its tending ant Formica obscuripes (Hymenoptera: Formicidae). Ann Entomol Soc Am 85:173–178

    Google Scholar 

  • Shi XW, Attygalle AB, Meinwald J (1997) Defense mechanisms of arthropods. 149. Synthesis and absolute configuration of two defensive alkaloids from the Mexican bean beetle, Epilachna varivestis. Tetrahedron Lett 38:6479–6482

    CAS  Google Scholar 

  • Silvestri F 1903 Contribuzioni alla conoscenza dei Mirmecophili, I. Osservazioni su alcuni mirmecophili dei dintorni di Portici. Ann Mus Zool R Univ Napoli 1:1–5

    Google Scholar 

  • Sloggett JJ (1998) Interactions between coccinellids (Coleoptera) and ants (Hymenoptera: Formicidae), and the evolution of myrmecophily in Coccinella magnifica Redtenbacher. Unpublished PhD thesis, University of Cambridge

  • Sloggett JJ (2005) Are we studying too few taxa? Insights from aphidophagous ladybird beetles (Coleoptera: Coccinellidae). Eur J Entomol 102:391–398

    Google Scholar 

  • Sloggett JJ, Majerus MEN (2000a) Aphid-mediated coexistence of ladybirds (Coleoptera: Coccinellidae) and the wood ant Formica rufa: seasonal effects, interspecific variability and the evolution of a coccinellid myrmecophile. Oikos 89:345–359

    Google Scholar 

  • Sloggett JJ, Majerus MEN (2000b) Habitat preferences and diet in the predatory Coccinellidae (Coleoptera): an evolutionary perspective. Biol J Linn Soc 70:63–88

    Google Scholar 

  • Sloggett JJ, Majerus MEN (2003) Adaptations of Coccinella magnifica, a myrmecophilous coccinellid to aggression by wood ants (Formica rufa group). II. Larval behaviour, and ladybird oviposition location. Eur J Entomol 100:337–344

    Google Scholar 

  • Sloggett JJ, Wood RA, Majerus MEN (1998) Adaptations of Coccinella magnifica Redtenbacher, a myrmecophilous coccinellid, to aggression by wood ants (Formica rufa group). I. Adult behavioral adaptation, its ecological context and evolution. J Insect Behav 11:889–904

    Google Scholar 

  • Sloggett JJ, Völkl W, Schulze W, von der Schulenberg JH, Majerus MEN (2002) The ant-associations and diet of the ladybird Coccinella magnifica (Coleoptera: Coccinellidae). Eur J Entomol 99:565–569

    Google Scholar 

  • Sloggett JJ, Webberley KM, Majerus MEN (2004) Low parasitoid success on a myrmecophilous host is maintained in the absence of ants. Ecol Entomol 29:123–127

    Google Scholar 

  • Smith JB (1886) Ant’s nests and their inhabitants. Am Nat 20:679–687

    Google Scholar 

  • Southwood TRE (1977) Ecological methods: with particular reference to the study of insect populations, 2nd Edn. Chapman & Hall, London

    Google Scholar 

  • Stäger R (1929) Warum werden geweisse Insekten von den Ameisen nicht verzehrt? Z Insbiol 24:227–230

    Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Sterling WL, Jones D, Dean DA (1979) Failure of the red imported fire ant too reduce entomophagous insect and spider abundance in a cotton agroecosystem. Environ Entomol 8:976–981

    Google Scholar 

  • Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants: community patterns and mechanisms. Blackwell, Oxford

    Google Scholar 

  • Tursch B, Braekman JC, Daloze D (1976) Arthropod alkaloids. Experientia 32:401–407

    CAS  Google Scholar 

  • Vinson SB, Scarborough TA (1989) Impact of the imported fire ant on laboratory populations of cotton aphid (Aphis gossypii) predators. Fla Entomol 72:107–111

    Google Scholar 

  • Völkl W (1995) Behavioural and morphological adaptations of the coccinellid, Platynaspis luteorubra for exploiting ant-attending resources (Coleoptera: Coccinellidae). J Insect Behav 8:653–670

    Google Scholar 

  • Völkl W (1997) Interactions between ants and aphid parasitoids: Patterns and consequences for resource utilization. Ecol Stud 130:225–240

    Google Scholar 

  • Völkl W, Vohland K (1996) Wax covers in larvae of two Scymnus species: do they enhance coccinellid larval survival? Oecologia 107:498–503

    Google Scholar 

  • Wasmann E (1894) Kritisches Verzeichniss der Myrmekophilen und Termitophilen Arthropoden. Verlag von Felix L. Dames, Berlin

    Google Scholar 

  • Wasmann E (1912) Neue Beiträge zur Kenntnis der Termitophilen und Myrmecophilen. Zeits Wissens Zool 101:70–115

    Google Scholar 

  • Way MJ (1954) Studies on the association of the ant Oecophylla longinoda (Latr.) with the scale insect, Saissetia zanzibarensis (Williams). Bull Entomol Res 45:113–134

    Article  Google Scholar 

  • Way MJ (1963) Mutualism between ants and honeydew producing Homoptera. Annu Rev Entomol 8:307–344

    Google Scholar 

  • Wheeler WM (1911) An ant-nest coccinellid [Brachyancantha quadripunctata (Mels.)]. J NY Entomol Soc 19:169–174

    Google Scholar 

  • Wilson NL, Oliver AD (1969) Food habits of the imported fire ant in pasture and pine forest areas in southeastern Louisiana. J Econ Entomol 62:1268–1271

    Google Scholar 

  • Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of alkaloids from plants via aphids to ladybirds. Naturwissenschaften 77:540–543

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. N. Majerus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majerus, M.E.N., Sloggett, J.J., Godeau, JF. et al. Interactions between ants and aphidophagous and coccidophagous ladybirds. Popul Ecol 49, 15–27 (2007). https://doi.org/10.1007/s10144-006-0021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-006-0021-5

Keywords

Navigation