Skip to main content

Advertisement

Log in

Soil Respiration and Belowground Carbon Allocation in Mangrove Forests

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Mangrove forests cover large areas of tropical and subtropical coastlines. They provide a wide range of ecosystem services that includes carbon storage in above- and below ground biomass and in soils. Carbon dioxide (CO2) emissions from soil, or soil respiration is important in the global carbon budget and is sensitive to increasing global temperature. To understand the magnitude of mangrove soil respiration and the influence of forest structure and temperature on the variation in mangrove soil respiration I assessed soil respiration at eleven mangrove sites, ranging from latitude 27°N to 37°S. Mangrove soil respiration was similar to those observed for terrestrial forest soils. Soil respiration was correlated with leaf area index (LAI) and aboveground net primary production (litterfall), which should aid scaling up to regional and global estimates of soil respiration. Using a carbon balance model, total belowground carbon allocation (TBCA) per unit litterfall was similar in tall mangrove forests as observed in terrestrial forests, but in scrub mangrove forests TBCA per unit litter fall was greater than in terrestrial forests, suggesting mangroves allocate a large proportion of their fixed carbon below ground under unfavorable environmental conditions. The response of soil respiration to soil temperature was not a linear function of temperature. At temperatures below 26°C Q10 of mangrove soil respiration was 2.6, similar to that reported for terrestrial forest soils. However in scrub forests soil respiration declined with increasing soil temperature, largely because of reduced canopy cover and enhanced activity of photosynthetic benthic microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Alongi DM. 2002. Present state and future of the world’s mangrove forests. Environ Conserv 29:331–49

    Article  Google Scholar 

  • Alongi DM, Boto KG, Robertson AI. 1992. Foodchains and carbon fluxes. In: Roberston AI, Alongi DM, Eds. Tropical mangrove ecosystems. Coastal and Estuarine Studies 41. Washington DC, USA: American Geophysical Union. pp 251–92

    Google Scholar 

  • Alongi DM, Clough BF, Dixon P, Terendi F. 2003. Nutrient partitioning and storage in arid-zone forests of the mangrove Rhizophora stylosa and Avicennia marina. Trees 17:51–60

    Article  CAS  Google Scholar 

  • Alongi DM, Clough BF, Robertson AI. 2005a. Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Aquat Bot 82:121–31

    Article  Google Scholar 

  • Alongi DM, Pfitzner J, Trott LA, Tirendi F, Dixon P, Klumpp DW. 2005b. Rapid soil accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang estuary, China. Estuar Coast Shelf Sci 63:605–18

    Article  CAS  Google Scholar 

  • Alongi DM, Sasekumar A, Chong VC, Pfitzner J, Trott LA, Terendi F, Dixon P, Brunskill GJ. 2004. Soil accumulation and organic material flux in a managed mangrove ecosystem: estimates of land-ocean-atmosphere exchange in peninsular Malaysia. Mar Geol 208:383–402

    Article  CAS  Google Scholar 

  • Alongi DM, Tirendi F, Clough BF. 2000. Below-ground decomposition of organic matter in forests of the mangroves Rhizophora sylosa and Avicennia marina along the arid coast of Western Australia. Aquat Bot 68:97–122

    Article  Google Scholar 

  • Alongi DM, Wattayakorn G, Pfitzner J, Terendi F, Zagorskis I, Brunskill GJ, Davidson A, Clough BF. 2001. Organic carbon accumulation and metabolic pathways in soils of mangrove forests in southern Thailand. Mar Geol 179:85–103

    Article  CAS  Google Scholar 

  • Amador JA, Jones RD. 1993. Nutrient limitation on microbial respiration in peat soils with different total phosphorus content. Soil Bio Biochem 25:793–801

    Article  CAS  Google Scholar 

  • An S, Joye SB. 2001. Enhancement of coupled denitrification by benthic photosynthesis in shallow subtidal estuarine soils. Limnol Oceanogr 46:62–74

    Article  CAS  Google Scholar 

  • Arreola-Lizarraga JA, Flores-Verdugo FJ, Ortega-Rubio A. 2004. Structure and litterfall of an arid mangrove stand on the Gulf of California, Mexico. Aqua Bot 79:137–43

    Article  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower S. 2004. A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob Change Biol 10:1756–66

    Article  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–72

    Article  CAS  Google Scholar 

  • Bréda NJJ. 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–17

    Article  PubMed  Google Scholar 

  • Brouwer R (1962) Distribution of dry matter in the plant. Neth J Agric Sci 10:399–408

    Google Scholar 

  • Bunt JS. 1995. Continental scale patterns in mangrove litter fall. Hydrobiologia 295:135–40

    Article  Google Scholar 

  • Cable JM, Huxman TE. 2004. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141:317–24

    Article  PubMed  Google Scholar 

  • Cahoon DR, Hensel P, Rybczyk J, McKee K, Proffitt CE, Perez B. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J Ecol 91:1093–105

    Article  Google Scholar 

  • Cannell MGR, Dewar RC. 1994. Carbon allocation in trees—a review of concepts for modeling. Adv Ecol Res 25:59–104

    Article  Google Scholar 

  • Chapin FS. 1991. Effects of multiple environmental stresses on nutrient availability and use. In: Mooney HA, Winner W, Pell EJ, Eds. Responses of plants to multiple stresses. Physiological Ecology Series. San Diego: Academic Press Inc. pp 67–88

    Google Scholar 

  • Chimner RA. 2004. Soil respiration rates of tropical peatlands in Micronesia and Hawaii. Wetlands 24:51–56

    Article  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC. 2003. Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycl 17:1111–20

    Article  CAS  Google Scholar 

  • Clough BF. 1998. Mangrove forest productivity and biomass accumulation in Hinchinbrook Channel, Australia. Mangr Salt Marsh 2:191–8

    Article  Google Scholar 

  • Clough BF. 1992. Primary productivity and growth of mangrove forests. In: Roberston AI, Alongi DM, Eds. Tropical mangrove ecosystems. Coastal and Estuarine Studies 41, Washington DC, USA: American Geophysical Union. pp 225–50

    Google Scholar 

  • Curiel Yuste J, Janssens IA, Carrara A, Ceulemans R. 2004. Annual Q10 of soil respiration reflects plant phonological patterns as well as temperature sensitivity. Glob Change Biol 10:161–9

    Article  Google Scholar 

  • Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Lay BE, Luo Y, Pregitzer KS, Randolf JC, Zak D. 2002. Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agric Forest Meteorol 113:39–51

    Article  Google Scholar 

  • Davidson EA, Verchot LV, Cattanio HJ, Ackerman IL, Carvalho JEM. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69

    Article  CAS  Google Scholar 

  • Davie JDS. 1984. Structural variation, litter production and nutrient status of mangrove vegetation in Moreton Bay. In: Coleman RJ, Covacevich J, Darle P, Eds. Focus on Stradbroke, Brisbane: Boolarong Publications. pp 208–23

    Google Scholar 

  • Dittmar T, Hertkorn N, Kattner G, Lara RJ. 2006. Mangroves, a major source of dissolved organic carbon to the oceans. Glob Biogeochem Cycl 20:1–7

    Article  CAS  Google Scholar 

  • Duke N, Ball MC, Ellison JC. 1998. Factors influencing the diversity and distributional gradients in mangroves. Glob Ecol Biogeogr Lett 7:27–47

    Article  Google Scholar 

  • Ellis J, Nicholls P, Craggs R, Hofstra D, Hewitt J. 2004. Effects of terrigenous sedimentation on mangrove physiology and associated macrobenthic communities. Mar Ecol Progr Ser 270:71–82

    Article  Google Scholar 

  • Ellison AM, Farnsworth EJ. 1996. Spatial and temporal variability in growth of Rhizophora mangle saplings on coral cays: links with variation in insolation, herbivory, and local sedimentation rate. J Ecol 84:717–31

    Article  Google Scholar 

  • Ewel KC, Twilley RR, Ong JE. 1998. Different kinds of mangrove forests provide different goods and services. Glob Ecol Biogeogr Lett 7:83–94

    Article  Google Scholar 

  • Fang C, Moncrieff JB. 2001. The dependence of soil CO2 efflux on temperature. Soil Biol Biochem 33:155–65

    Article  CAS  Google Scholar 

  • Feller IC. 1995. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 65:477–505

    Article  Google Scholar 

  • Feller IC, Whigham DF, McKee KL, Lovelock CE. 2003. Nitrogen limitation of growth and nutrient dynamics in a mangrove forest, Indian River Lagoon, Florida. Oecologia 134:405–14

    PubMed  Google Scholar 

  • Feller IC, Whigham DF, McKee KL, O’Neill JP. 2002. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62:145–75

    Article  Google Scholar 

  • Furukawa K, Wolanski E, Mueller H. 1997. Currents and sediment transport in mangrove forests. Estuar Coast Shelf Sci 44:301–9

    Article  CAS  Google Scholar 

  • Giardina CP, Ryan MG. 2000. Evidence that decomposition rates of organic carbon in mineral soil does not vary with temperature. Nature 404:858–61

    Article  PubMed  CAS  Google Scholar 

  • Giardina CP, Ryan MG. 2002. Soil surface CO2 efflux, litterfall and total belowground carbon allocation in a fast growing Eucalyptus plantation. Ecosystems 5:487–99

    Article  CAS  Google Scholar 

  • Giardina CP, Ryan MG, Binkley D, Fownes JH. 2003. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Glob Change Biol 9:1438–50

    Article  Google Scholar 

  • Golley FB, McGinnis JT, Clements RT, Child G1, Duever MJ. 1975. Mineral cycling in a tropical moist forest ecosystem. University of Georgia Press, Athens

    Google Scholar 

  • Grace J, Rayment M. 2000. Respiration in the balance. Nature 404:819–20

    Article  PubMed  CAS  Google Scholar 

  • Green EP, Clark CD, Mumby PJ, Edwards AJ, Ellis AC. 1998. Remote sensing techniques for mangrove mapping. Int J Remote Sens 19:935–56

    Article  Google Scholar 

  • Guzman HM, Barnes PAG, Lovelock CE, Feller IC. 2005. A site description of the CARICOMP mangrove, seagrass and coral reef sites in Bocas del Toro, Panama. Caribb J Sci 41:430–40

    Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hogberg M, Nyberg G, Ottosson-Lofvenius M, Read DJ. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–90

    Article  PubMed  Google Scholar 

  • Howes BL, Dacey JWH, Teal JM. 1985. Annual carbon mineralization and belowground production of Spartina alternijlora in a New England salt marsh. Ecology 66:595–605

    Article  CAS  Google Scholar 

  • Hutchings P, Saenger P. 1987. Ecology of mangroves. St Lucia, Brisbane, Australia: University of Queensland Press

    Google Scholar 

  • Janssens IA, Pilkegaard K. 2003. Large seasonal changes in Q 10 of soil respiration in a beech forest. Glob Change Biol 9:911–8

    Article  Google Scholar 

  • Jianwu Tang, Baldocchi DD, Liukang Xu. 2005. Tree photosynthesis modulates soil respiration on a diurnal time scale. Glob Change Biol 11:1298–304

    Article  Google Scholar 

  • Joye SB, Lee RY. 2004. Benthic microbial mats: important sources of fixed nitrogen and carbon to the Twin Cays, Belize ecosystem. Atoll Res Bull 528:1–24

    Google Scholar 

  • Komiyama A, Ogina K, Aksornkoae S, Sabhasri S. 1987. Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. J Trop Ecol 3:97–108

    Google Scholar 

  • Kuzyokov Y. 2002. Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods. Soil Biol Biochem 34:1621–31

    Article  Google Scholar 

  • Lee RY, Joye SB. 2006. Patterns and controls on nitrogen fixation and denitrification in intertidal soils of a tropical oceanic mangrove island. Mar Ecol Prog Ser 307:127–41

    Article  Google Scholar 

  • Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23

    Article  Google Scholar 

  • Lovelock CE, Feller IC, Ball MC, Ellis J, Sorrell B. 2007a. Testing the Growth Rate vs. Geochemical Hypothesis for latitudinal variation in plant nutrients. Ecol Lett 10:1154–63

    Article  PubMed  CAS  Google Scholar 

  • Lovelock CE, Feller IC, Ellis J, Schwarz AM, Hancock N, Nichols P, Sorrell B. 2007b. Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia 153:633–41

    Article  PubMed  Google Scholar 

  • Lovelock CE, Feller IC, McKee KL, Engelbrecht BM, Ball MC. 2004. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Funct Ecol 18:25–33

    Article  Google Scholar 

  • Lovelock CE, Feller IC, McKee KL, Thompson R. 2005. Variation in mangrove forest structure and soil characteristics in Bocas del Toro, Republic of Panamá. Caribb J Sci 41:456–64

    Google Scholar 

  • Lovelock CE, Ruess RW, Feller IC. 2006. Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability. Tree Physiol 26:1601–6

    PubMed  CAS  Google Scholar 

  • Lugo AE. 1997. Old-growth mangrove forests in the United States. Conserv Biol 11:11–20

    Article  Google Scholar 

  • Lugo AE, Snedaker SC. 1974. The ecology of mangroves. Ann Rev Ecol System 5:39–64

    Article  Google Scholar 

  • Macintyre IG, Littler MM, Littler DS. 1995. Holocene history of Tobacco Range, Belize, Central America. Atoll Res Bull 43:1–18

    Google Scholar 

  • Manson FJ, Loneraganc NR, Phinn SR. 2003. Spatial and temporal variation in distribution of mangroves in Moreton Bay, subtropical Australia: a comparison of pattern metrics and change detection analyses based on aerial photographs. Estuar Coast Shelf Sci 57:653–66

    Article  Google Scholar 

  • McKee KL. 1996. Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia. Tree Physiol 16:883–9

    PubMed  Google Scholar 

  • McKee KL. 2001. Root proliferation in decaying roots and old root channels: a nutrient conservation mechanism in oligotrophic mangrove forests? J Ecol 89:876–87

    Article  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–56

    Article  Google Scholar 

  • McKee KL, Faulkner PL. 2000. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize. Atoll Res Bull 48:46–58

    Google Scholar 

  • McKee KL, Feller IC, Popp M, Wanek W. 2002. Mangrove isotopic fractionation (δ15N and δ13C) across a nitrogen versus phosphorus limitation gradient. Ecology 83:1065–75

    Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–217

    Article  PubMed  CAS  Google Scholar 

  • Middleburg JJ, Nieuwenhuize J, Slim FJ, Ohowa B. 1996. Sediment biogeochemistry in an East African mangrove forest (Gazi Bay, Kenya). Biogeochem 34:133–55

    Google Scholar 

  • Potts M. 1979. Nitrogen fixation (acetelene reduction) associated with communities of heterocystous and nonheterocystous bluegreen algae in mangrove forests of Sinai. Oecologia 39:359–73

    Article  Google Scholar 

  • Raich JW. 1998. Aboveground productivity and soil respiration in three Hawaiian rain forests. For Ecol Manage 107:309–18

    Article  Google Scholar 

  • Raich JW, Nadelhoffer KJ. 1989. Belowground carbon allocation in forest ecosystems: global trends. Ecology 70:1346–54

    Article  Google Scholar 

  • Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    CAS  Google Scholar 

  • Raich JW, Tufekcioglu A. 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90

    Article  CAS  Google Scholar 

  • Robertson AI, Alongi DM, Boto KG. 1992. Foodchains and carbon fluxes. In: Roberston AI, Alongi DM, Eds. Tropical mangrove ecosystems. Coastal and Estuarine Studies 41, Washington DC, USA: American Geophysical Union. pp 293–326

    Google Scholar 

  • Robertson AI, Dixon P. 1993. Separating live and dead fine roots using colloidal silica: an example from mangrove forests. Plant Soil 157:151–4

    Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornsson B, Allen MF, Maurer G. 2003. Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 74:643–62

    Article  Google Scholar 

  • Rustad LE, Thomas G, Huntington M, Boone RD. 2000. Controls on soil respiration: implications for climate change. Biogeochemistry 48:1–6

    Article  Google Scholar 

  • Saenger P, Snedaker SC. 1993. Pantropical trends in mangrove above-ground biomass and annual litterfall. Oecologia 96:293–329

    Article  Google Scholar 

  • Schlesinger WH, Andrews JA. 2000. Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Article  CAS  Google Scholar 

  • Schories D, Muhlig U. 2000. CO2 gas exchange of benthic mciroalgae during exposure to air: a technique for the rapid assessment of primary production. Wetl Ecol Manag 8:273–80

    Article  Google Scholar 

  • Schwarz AM. 2004. Contribution of photosynthetic gains during tidal emersion to production of Zostera capricorni in a North Island, New Zealand estuary. New Zeal J Mar Fresh Res 38:809–18

    Article  Google Scholar 

  • Spalding MD, Balsco F, Field CD. 1997. World mangrove atlas. The International Society for Mangrove Ecosystems. Japan: Okinawa

    Google Scholar 

  • Twilley RR. 1985. The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary. Estuar Coasl Shelf Sci 20:543–7

    Article  CAS  Google Scholar 

  • Twilley RR, Chen RH, Hargis T. 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Poll 64:265–88

    Article  CAS  Google Scholar 

  • Twilley RR, Lugo AE, Patterson-Zucca C. 1986. Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67:670–83

    Article  Google Scholar 

  • Underwood GJC, Perkins RG, Consalvey M, Hanlon ARM, Oxborough K, Baker NR, Paterson DM. 2005. Patterns in microphytobenthic primary productivity: species-specific variation in migratory rhythms and photosynthesis in mixed species biofilms. Limnol Oceanogr 50:755–76

    Article  Google Scholar 

  • Valentini R, Matteucchi G, Dolman H, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilgaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Lousteau D, Gudmundsson J, Thorgairsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404:861–5

    Article  PubMed  CAS  Google Scholar 

  • Valiela I, Bowen JL, York JK. 2001. Mangrove forests: one of the world’s threatened major tropical environments. BioScience 51:807–81

    Article  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fert Soils 30:460–8

    Article  CAS  Google Scholar 

  • Xu M, Qi Y. 2001. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Glob Biogeochem Cycl 15:687–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation under Grant DEB 99–81309, a WISC award from the American Association for the Advancement of Science, the New Zealand Foundation for Research, Science and Technology (C01X0024, C01X0215, and C01X0307), the Hunterdon Oceanographic Research Fund, the Smithsonian’s Marine Science Network, the Smithsonian Marine Station at Fort Pierce, the Caribbean Coral Reef Ecosystems Program (contribution no: 818) and Australian Research Council awards LP0561498 and DP0774491. I thank Candy Feller, Roger Ruess, and Marilyn Ball, and the staff of Carrie Bow Cay Research Station and Pelican Beach Resort, Belize. Thanks also to Gary Raulerson who provided access to unpublished data. Thanks are also extended to many people who helped in the field, including Fernanda Adame, Dianne Allen, Don Cahoon, Anne Chamberlain, Beth Clegg, Bettina Engelbrecht, Sharon Ewe, Ray Feller, Jane Halliday, Nicole Hancock, Helen Penrose, Brian Sorrell, Ann Maree Schwarz, and Rachel Tenni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Lovelock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovelock, C.E. Soil Respiration and Belowground Carbon Allocation in Mangrove Forests. Ecosystems 11, 342–354 (2008). https://doi.org/10.1007/s10021-008-9125-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9125-4

Keywords

Navigation