Skip to main content

Advertisement

Log in

Functional Richness and Relative Resilience of Bird Communities in Regions with Different Land Use Intensities

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Empirical estimates of the function and resilience of communities under different management regimes can provide valuable information for sustainable natural resource management, but such estimates are scarce to date. We quantified the functional richness and relative resilience of bird communities inhabiting five regions in southeastern Australia that represented different management regimes. First, we show that functional richness and relative resilience were reduced at species-poor sites in all regions. Second, we show that bird communities in agricultural regions had fewer body mass groups and fewer functional groups than expected by chance. This suggests that both the function and the resilience of bird communities in agricultural regions were reduced. The likely mechanisms for the observed loss of function and relative resilience are: (1) the simplification of landscape texture resulting in selective extinction of certain body mass groups; and (2) the selective extinction of certain functional groups that are particularly sensitive to intensive land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

REFERENCES

  • Allen CR, Gunderson L, Johnson AR. 2005. The use of discontinuities and functional groups to assess relative resilience in complex systems. Ecosystems 8:958–66.

    Article  Google Scholar 

  • Allen CR, Garmestani AS, Havlicek TD, Marquet PA, Peterson GD, Restrepo C, Stow CA, Weeks BE. 2006. Patterns in body mass distributions: sifting among alternative hypotheses. Ecol Lett 9:630–43.

    Article  PubMed  CAS  Google Scholar 

  • Allison G. 2004. The influence of species diversity and stress intensity on community resistance and resilience. Ecol Monogr 74:117–34.

    Article  Google Scholar 

  • Belyea LR, Lancaster J. 1999. Assembly rules within a contingent ecology. Oikos 86:402–16.

    Article  Google Scholar 

  • Bennett EM, Cumming GS, Peterson GD. 2005. A systems model approach to determining resilience surrogates for case studies. Ecosystems 8:945–57.

    Article  Google Scholar 

  • Calder III WA. 1984. Size, function and life history. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Cumming GS, Barnes G, Perz S, Schmink M, Sieving KE, Southworth J, Binford M, Holt RD, Stickler C, van Holt T. 2005. An exploratory framework for the empirical measurement of resilience. Ecosystems 8:975–87.

    Article  Google Scholar 

  • Diamond JM. 1975. Assembly of species communities. In: Cody ML, Diamond JM, Eds. Ecology and evolution of communities. Harvard University Press, London, pp 342–444.

    Google Scholar 

  • Elmqvist T, Folke C, Nystrom M, Peterson G, Bengtsson J, Walker B, Norberg J. 2003. Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–94.

    Google Scholar 

  • Fischer J, Lindenmayer DB. 2002. Treating the nestedness temperature calculator as a “black box” can lead to false conclusions. Oikos 99:193–9.

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB, Manning AD. 2006. Biodiversity, ecosystem function and resilience: Ten guiding principles for off-reserve conservation. Front Ecol Environ 4:80–6.

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. 2005. Global consequences of land use. Science 309:570–4.

    Article  PubMed  CAS  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–81.

    Article  Google Scholar 

  • Forys EA, Allen CR. 2002. Functional group change within and across scales following invasions and extinctions in the Everglades ecosystem. Ecosystems 5:339–47.

    Article  Google Scholar 

  • Gotelli NJ. 2000. Null model analysis of species co-occurrence patterns. Ecology 81:2606–21.

    Article  Google Scholar 

  • Gotelli NJ, Graves GR. 1996. Null models in ecology. Washington and London: Smithsonian Institution Press.

    Google Scholar 

  • Gotelli NJ, Entsminger GL. 2006. EcoSim: Null models software for ecology. Version 7. Jericho, Vermont: Acquired Intelligence and Kesey-Bear.

    Google Scholar 

  • Gunderson LH, Holling CS (Eds). 2002. Panarchy. Washington D.C.: Island Press.

    Google Scholar 

  • Hastie TJ. 1992. Generalized additive models. In: Chambers JM, Hastie TJ, Eds. Statistical models in S. Wadsworth and Brooks, Cole Advanced Books and Software Pacific Grove, California, pp 249–307.

    Google Scholar 

  • Holling CS. 1973. Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23.

    Article  Google Scholar 

  • Holling CS. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol Monogr 62:447–502.

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.

    Article  Google Scholar 

  • Jonsson BG. 2001. A null model for randomization tests of nestedness in species assemblages. Oecologia 127:309–13.

    Article  Google Scholar 

  • Kotliar NB, Wiens JA. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–60.

    Article  Google Scholar 

  • Lunt ID, Spooner PG. 2005. Using historical ecology to understand patterns of biodiversity in fragmented agricultural landscapes. J Biogeogr 32:1859–73.

    Article  Google Scholar 

  • Mayfield MM, Daily GC. 2005. Countryside biogeography of neotropical herbaceous and shrubby plants. Ecol Appl 15:423–39.

    Article  Google Scholar 

  • Mikkelson GM. 1993. How do food webs fall apart: a study of changes in trophic structure during relaxation on habitat fragments. Oikos 67:539–47.

    Article  Google Scholar 

  • Miklós I, Podani J. 2004. Randomization of presence-absence matrices: Comments and new algorithms. Ecology 85:86–92.

    Article  Google Scholar 

  • Moulton MP, Lockwood JL. 1992. Morphological dispersion of introduced Hawaiian finches: evidence for competition and a Narcissus effect. Evol Ecol 6:45–55.

    Article  Google Scholar 

  • Petchey OL, Gaston KJ. 2002. Extinction and the loss of functional diversity. Proc R Soc Lond B Biol Sci 269:1721–7.

    Article  Google Scholar 

  • Petchey OL, Gaston KJ. 2006. Functional diversity: back to basics and looking forward. Ecol Lett 9:741–58.

    Article  PubMed  Google Scholar 

  • Peters RH. 1983. The ecological implications of body size. Cambridge: Cambridge University Press.

    Google Scholar 

  • Peterson G, Allen CR, Holling CS. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18.

    Article  Google Scholar 

  • Peterson GD. 2002. Estimating resilience across landscapes. Conserv Ecol 6: Art. No. 17

  • R Development Core Team. 2006. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Restrepo C, Renjifo LM, Marples P. 1997. Frugivorous birds in fragmented neotropical montane forests: landscape pattern and body mass distribution. In: Laurance WF, Bierregaard Jr. RO, Eds. Tropical forest remnants. The University of Chicago Press Chicago, pp 171–89.

    Google Scholar 

  • Rodriguez-Girones MA, Santamaria L. 2006. A new algorithm to calculate the nestedness temperature of presence-absence matrices. J Biogeogr 33:924–35.

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770–4.

    Article  PubMed  CAS  Google Scholar 

  • Sekercioglu CH. 2006. Increasing awareness of avian ecological function. Trends Ecol Evol 21:464–71.

    Article  PubMed  Google Scholar 

  • Siemann E, Brown JH. 1999. Gaps in mammalian body size distributions reexamined. Ecology 80:2788–92.

    Google Scholar 

  • Walker BH. 1992. Biodiversity and ecological redundancy. Conserv Biol 6:18–23.

    Article  Google Scholar 

  • Walker B. 1995. Conserving biological diversity through ecosystem resilience. Conserv Biol 9:747–52.

    Article  Google Scholar 

  • Walker B, Kinzig A, Langridge J. 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113.

    Article  Google Scholar 

  • Wood SN. 2006. Generalized additive models. London: Chapman & Hall.

    Google Scholar 

  • Wright JP, Naeem S, Hector A, Lehman C, Reich PB, Schmid B, Tilman D. 2006. Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol Lett 9:111–20.

    Article  PubMed  Google Scholar 

  • Zar JH. 1999. Biostatistical analysis. 4th edn. Sydney: Prentice-Hall.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We greatly appreciate comments by R. Cunningham, A. Manning, C. Sekercioglu and five anonymous referees. The work was supported by Land & Water Australia, the Australian Research Corporation, and the Kendall Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fischer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material – Appendix S1

(PDF 2977910 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, J., Lindenmayer, D.B., Blomberg, S.P. et al. Functional Richness and Relative Resilience of Bird Communities in Regions with Different Land Use Intensities. Ecosystems 10, 964–974 (2007). https://doi.org/10.1007/s10021-007-9071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-007-9071-6

Key words

Navigation