Skip to main content
Log in

Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

An Erratum to this article was published on 14 December 2006

Abstract

The remarkable survival of the hyperthermophilic archaeon Pyrococcus furiosus to ionizing radiation was previously demonstrated. Using a time course study and whole-genome microarray analyses of mRNA transcript levels, the genes and regulatory pathways involved in the repair of lesions produced by ionizing irradiation (oxidative damage and DNA strand breaks) in P. furiosus were investigated. Data analyses showed that radA, encoding the archaeal homolog of the RecA/Rad51 recombinase, was moderately up regulated by irradiation and that a putative DNA-repair gene cluster was specifically induced by exposure to ionizing radiation. This novel repair system appears to be unique to thermophilic archaea and bacteria and is suspected to be involved in translesion synthesis. Genes that encode for a putative Dps-like iron-chelating protein and two membrane-bound oxidoreductases were differentially expressed following gamma irradiation, potentially in response to oxidative stress. Surprisingly, the many systems involved in oxygen detoxification and redox homeostasis appeared to be constitutively expressed. Finally, we identified several transcriptional regulators and protein kinases highly regulated in response to gamma irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MCH, Hood L, DiRuggiero J (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    Article  PubMed  CAS  Google Scholar 

  • Bell SD, Cairns SS, Robson RL, Jackson SP (1999) Transcriptional regulation of an archaeal operon in vivo and in vitro. Mol Cell 4:971–982

    Article  PubMed  CAS  Google Scholar 

  • Brinkman AB, Dahlke I, Tuininga JE, Lammers T, Dumay V, de Heus E, Lebbink JH, Thomm M, de Vos WM, van Der Oost J (2000) An Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus is negatively autoregulated. J Biol Chem 275:38160–38169

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Christendat D, Yee A, Dharamsi A, Kluger Y, Savchenko A, Cort JR, Booth V, Mackereth CD, Saridakis V, Ekiel I, Kozlov G, Maxwell KL, Wu N, McIntosh LP, Gehring K, Kennedy MA, Davidson AR, Pai EF, Gerstein M, Edwards AM, Arrowsmith CH (2000) Structural proteomics of an archaeon. Nat Struct Biol 7:903–909

    Article  PubMed  CAS  Google Scholar 

  • Corpet F, Servant F, Gouzy J, Kahn D (2000) ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons. Nucleic Acids Res 28:267–269

    Article  PubMed  CAS  Google Scholar 

  • Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158:41–64

    PubMed  CAS  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans—the consumate survivor. Nature Rev Microbiol 3:882–892

    Article  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes H M, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283

    PubMed  CAS  Google Scholar 

  • Dianov GL, O’Neill P, Goodhead DT (2001) Securing genome stability by orchestrating DNA repair: removal of radiation clustered leions in DNA. Bioessays 23:745–749

    Article  PubMed  CAS  Google Scholar 

  • DiRuggiero J, Santangelo N, Nackerdien Z, Ravel J, Robb FT (1997) Repair of extensive ionizing-radiation DNA damage at 95°C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 179:4643–4645

    PubMed  CAS  Google Scholar 

  • DiRuggiero J, Robb FT (2004) Early evolution of DNA repair mechanisms. In: Ribas de Pouplana L (eds) The genetic code, the origin of life. Landes Biosciences pp 474–485

  • Eichler J, Adams MWW (2005) Posttranslational protein modification in archaea. Microbiol Mol Biol Rev 69:393–425

    Article  PubMed  CAS  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  • Fournier M, Dermoun Z, Durand MC, Dolla A (2004) A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. J Biol Chem 279:1787–1793

    Article  PubMed  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM, Washington

    Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  CAS  Google Scholar 

  • Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1623

    Article  PubMed  CAS  Google Scholar 

  • Gerard E, Jolivet E, Prieur D, Forterre P (2001) DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol Genet Genom 266:72–78

    Article  CAS  Google Scholar 

  • Golden MH, Ramdath D (1987) Free radicals in the pathogenesis of kwashiorkor. Proc Nutr Soc 46:53–68

    Article  PubMed  CAS  Google Scholar 

  • Grogan DW (2004) Stability and repair of DNA in hyperthermophilic archaea. Curr Issues Mol Biol 6:137–144

    PubMed  CAS  Google Scholar 

  • Guy CP, Haldenby S, Brindley A, Walsh DA, Briggs GS, Warren MJ, Allers T, Bolt EL (2006) Interactions of RadB, a DNA repair protein in archaea, with DNA and ATP. J Mol Biol 358:46–56

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    PubMed  CAS  Google Scholar 

  • Harris DR, Ward DE, Feasel JM, Lancaster KM, Murphy RD, Mallet TC, Crane III EJ (2005) Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. FEBS J 272:1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson F (1985) Chemical changes induced in DNA by ionizing radiation. Prog Nucl Acid Res Mol Biol 32:115–154

    Article  CAS  Google Scholar 

  • Ideker T, Thorsson V, Siegel AF, Hood LE (2000) Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. J Comput Biol 7:805–817

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Ann Rev Microbiol 57:395–418

    Article  CAS  Google Scholar 

  • Ishino Y, Nishino T, Morikawa K (2006) Mechanisms of maintaining genetic stability by homologous recombination. Chem Rev 106:324–339

    Article  PubMed  CAS  Google Scholar 

  • Jolivet E, Matsunaga F, Ishino Y, Forterre P, Prieur D, Myllykallio H (2003) Physiological responses of the hyperthermophilic archaeon “Pyrococcus abyssi” to DNA damage caused by ionizing radiation. J Bacteriol 185:3958–3961

    Article  PubMed  CAS  Google Scholar 

  • Kawakami R, Sakuraba H, Kamohara S, Goda S, Kawarabayasi Y, Ohshima T (2004) Oxidative stress response in an anaerobic hyperthermophilic archaeon: presence of a functional peroxiredoxin in Pyrococcus horikoshii. J Biochem 136:541–547

    Article  PubMed  CAS  Google Scholar 

  • Kelman Z, White MF (2005) Archaeal DNA replication and repair. Curr Opin Microbiol 8:669–676

    Article  PubMed  CAS  Google Scholar 

  • Kennelly PJ (2003) Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 370:373–389

    Article  PubMed  CAS  Google Scholar 

  • Khil PP, Camerini-Otero RD (2002) Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44:89–105

    Article  PubMed  CAS  Google Scholar 

  • Komori K, Miyata T, DiRuggiero J, Holley-Shanks R, Hayashi I, Cann I K, Mayanagi K, Shinagawa H, Ishino Y (2000) Both RadA and RadB are involved in homologous recombination in Pyrococcus furiosus. J Biol Chem 275:33782–33790

    Article  PubMed  CAS  Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, Diruggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  PubMed  CAS  Google Scholar 

  • Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Ann Rev Physiol. 67:225–257

    Article  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144

    Article  PubMed  CAS  Google Scholar 

  • Limauro D, Pedone E, Pirone L, Bartolucci S (2006) Identification and characterization of 1-Cys peroxiredoxin from Sulfolobus solfataricus and its involvement in the response to oxidative stress. FEBS J 273:721–731

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhou J, Omelchenko MV, Beliaev AS, Venkateswaran A, Stair J, Wu L, Thompson DK, Xu D, Rogozin IB, Gaidamakova EK, Zhai M, Makarova KS, Koonin EV, Daly MJ (2003) Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci USA 100:4191–4196

    Article  PubMed  CAS  Google Scholar 

  • Lucas S, Toffin L, Zivanovic Y, Charlier D, Moussard H, Forterre P, Prieur D, Erauso G (2002) Construction of a shuttle vector for, and spheroplast transformation of, the hyperthermophilic archaeon Pyrococcus abyssi. Appl Environ Microbiol 68:5528–5536

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Weiss R, Adams MW (2000) Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J Bacteriol 182:1864–1871

    Article  PubMed  CAS  Google Scholar 

  • Maeder DL, Weiss RB, Dunn DM, Cherry JL, Gonzalez JM, DiRuggiero J, Robb FT (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics 152:1299–1305

    PubMed  CAS  Google Scholar 

  • Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant S H (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  • Ouhammouch M, Werner F, Weinzierl ROJ, Geiduschek EP (2004) A fully recombinant system for activator-dependent archaeal transcription. J Biol Chem 279:51719–51721

    Article  PubMed  CAS  Google Scholar 

  • Peak JG, Ito T, Robb FT, Peak MJ (1995) DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizind radiation: effects of hydroxyl radical quenchers. Int J Radiat Biol 67:1–6

    Article  PubMed  CAS  Google Scholar 

  • Praul CA, Taylor WD (1997) Responses of Halobacterium halobium and Sulfolobus solfataricus to hydrogen peroxide and N-methyl-N′-nitro-N-nitrosoguanidine [correction of N-methyl-N-nitrosoguanidine] exposure. Microbiol Res 152:257–260

    CAS  Google Scholar 

  • Pulliainen AT, Kauko A, Haataja S, Papageorgiou AC, Finne J (2005) Dps/Dpr ferritin-like protein: insights into the mechanism of iron incorporation and evidence for a central role in cellular iron homeostasis in Streptococcus suis. Mol Microbiol 57:1086–1100

    Article  PubMed  CAS  Google Scholar 

  • Ramsay B, Wiedenheft B, Allen M, Gauss GH, Martin Lawrence C, Young M, Douglas T (2006) Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Inorg Biochem 100(5–6):1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Reich CI, McNeil LK, Brace JL, Brucker JK, Olsen GJ (2001) Archaeal RecA homologues: different response to DNA-damaging agents in mesophilic and thermophilic Archaea. Extremophiles 5:265–275

    Article  PubMed  CAS  Google Scholar 

  • Riley PA (1994) Free radicals in biology:oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33

    Article  PubMed  CAS  Google Scholar 

  • Robb FT, Park JB, Adams MWW (1992) Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Biochim Biophys Acta 1120:267–272

    PubMed  CAS  Google Scholar 

  • Rohlin L, Trent JD, Salmon K, Kim U, Gunsalus RP, Liao JC (2005) Heat shock response of Archaeoglobus fulgidus. J Bacteriol 187:6046–6057

    Article  PubMed  CAS  Google Scholar 

  • Salerno V, Napoli A, White MF, Rossi M, Ciaramella M (2003) Transcriptional response to DNA damage in the archaeon Sulfolobus solfataricus. Nucl Acids Res 31:6127–6138

    Article  PubMed  CAS  Google Scholar 

  • Sapra R, Verhagen MFJM, Adams MWW (2000) Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 182:3423–3428

    Article  PubMed  CAS  Google Scholar 

  • Schut GJ, Zhou J, Adams MWW (2001) DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: evidence for a new type of sulfur-reducing enzyme complex. J Bacteriol 183:7027–7036

    Article  PubMed  CAS  Google Scholar 

  • Schut GJ, Brehm SD, Datta S, Adams MWW (2003) Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol 185:3935–3947

    Article  PubMed  CAS  Google Scholar 

  • Shockley KR, Ward DE, Chhabra SR, Conners SB, Montero CI, Kelly RM (2003) Heat shock response by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 69:2365–2371

    Article  PubMed  CAS  Google Scholar 

  • Silva PJ, van den Ban ECD, Wassink H, Haaker H, de Castro B, Robb FT, Hagen WR (2000) Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur J Biochem 267:6541–6551

    Article  PubMed  CAS  Google Scholar 

  • Tahara M, Ohsawa A, Saito S, Kimura M (2004) In vitro phosphorylation of initiation factor 2 alpha (aIF2 alpha) from hyperthermophilic archaeon Pyrococcus horikoshii OT3. J Biochem (Tokyo) 135:479–485

    CAS  Google Scholar 

  • Tatur J, Hagedoorn P-L, Overeijnder ML, Hagen WR (2005) A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles 10(2):139–148

    Article  PubMed  CAS  Google Scholar 

  • Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315

    Article  PubMed  CAS  Google Scholar 

  • Van Ooteghem SA, Beer SK, Yue PC (2002) Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl Biochem Biotechnol 98–100:177–189

    Article  PubMed  Google Scholar 

  • Vignais P, Colbeau A (2004) Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6:159–188

    PubMed  CAS  Google Scholar 

  • Ward DE, Donnelly CJ, Mullendore ME, van der Oost J, de Vos WM, Crane EJ 3rd (2001) The NADH oxidase from Pyrococcus furiosus. Implications for the protection of anaerobic hyperthermophiles against oxidative stress. Eur J Biochem 268:5816–5823

    Article  PubMed  CAS  Google Scholar 

  • Watrin L, Prieur D (1996) UV and ethyl methanesulfonate effects in hyperthermophilic archaea and isolation of auxtrophic mutants of Pyrococcus strains. Curr Microbiol 33:377–382

    Article  PubMed  CAS  Google Scholar 

  • Weinberg MV, Jenney FE Jr, Cui X, Adams MWW (2004) Rubrerythrin from the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase. J Bacteriol 186:7888–7895

    Article  PubMed  CAS  Google Scholar 

  • Whitehead K, Kish A, Pan M, Kaur A, King N, Hohmann L, DiRuggiero J, Baliga NS (2006) Stress management: using a systems approach to understand stress response to gamma radiation. Mol Syst Biol (in press)

Download references

Acknowledgments

We thank Peter Kennelly for help in analyzing the protein kinase sequences from P. furiosus, and Rhonda Holley-shank for technical support. This work was supported by funds from NASA (NCC9147 to JDR) and the Human Frontier Science Program (RG522002 to JDR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyne DiRuggiero.

Additional information

Communicated by K. Horikoshi

An erratum to this article can be found at http://dx.doi.org/10.1007/s00792-006-0046-x

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, E., Lowe, T.M., Savas, J. et al. Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles 11, 19–29 (2007). https://doi.org/10.1007/s00792-006-0002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0002-9

Keywords

Navigation