Skip to main content
Log in

Kinetic and spectroscopic characterization of the E134A- and E134D-altered dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Glutamate-134 (E134) is proposed to act as the general acid/base during the hydrolysis reaction catalyzed by the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae. To date, no direct evidence has been reported for the role of E134 during catalytic turnover by DapE. In order to elucidate the catalytic role of E134, altered DapE enzymes were prepared in which E134 was substituted with an alanine and an aspartate residue. The Michaelis constant (K m) does not change upon substitution with aspartate but the rate of the reaction changes drastically in the following order: glutamate (100% activity), aspartate (0.09%), and alanine (0%). Examination of the pH dependence of the kinetic constants k cat and K m for E134D-DapE revealed ionizations at pH 6.4, 7.4, and approximately 9.7. Isothermal titration calorimetry experiments revealed a significant weakening in metal K d values of E134D-DapE. D134 and A134 perturb the second divalent metal binding site significantly more than the first, but both altered enzymes can still bind two divalent metal ions. Structural perturbations of the dinuclear active site of DapE were also examined for two E134-substituted forms, namely E134D-DapE and E134A-DapE, by UV–vis and electron paramagnetic resonance (EPR) spectroscopy. UV–vis spectroscopy of Co(II)-substituted E134D-DapE and E134A-DapE did not reveal any significant changes in the electronic absorption spectra, suggesting that both Co(II) ions in E134D-DapE and E134A-DapE reside in distorted trigonal bipyramidal coordination geometries. EPR spectra of [Co_(E134D-DapE)] and [Co_(E1341A-DapE] are similar to those observed for [CoCo(DapE)] and somewhat similar to the spectrum of [Co(H2O)6]2+ which typically exhibit E/D values of approximately 0.1. Computer simulation returned an axial g-tensor with g (x,y)=2.24 and E/D=0.07; g z was only poorly determined, but was estimated as 2.5–2.6. Upon the addition of a second Co(II) ion to [Co_(E134D-DapE)] and [Co_(E134A-DapE)], a broad axial signal was observed; however, no signals were observed with B 0||B 1 (“parallel mode”). On the basis of these data, E134 is intrinsically involved in the hydrolysis reaction catalyzed by DapE and likely plays the role of a general acid and base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

Abbreviations

AAP:

Aminopeptidase from Aeromonas proteolytica

CPG2 :

Carboxypeptidase G2 from Pseudomonas sp. strain RS-16

DapE:

dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase)

EcMetAP-I:

Methionyl aminopeptidase from Escherichia coli

EPR:

Electron paramagnetic resonance

E134:

Glutamate-134

E151:

Glutamate-151

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

mDAP:

meso-Diaminopimelate

d,d-SDAP:

N-Succinyl-d,d-diaminopimelate

l,l-SDAP:

N-Succinyl-l,l-diaminopimelate

SDAP:

N-Succinyl-diaminopimelic acid

Tricine:

N-Tris(hydroxymethyl)methylglycine

Tris:

Tris(hydroxymethyl)aminomethane

WT:

Wild type

References

  1. Prevention CfDCa (1995) MMWR Morb Mortal Wkly Rep 44:1–13

    Google Scholar 

  2. Snider DE, Raviglione M, Kochi A (1994) Tuberculosis: pathogenesis, protection, control. In: Bloom BR (ed) Global burden of tuberculosis. ASM Press, Washington, pp 3–11

    Google Scholar 

  3. Howe RA, Bowker KE, Walsh TR, Feest TG, MacGowan AP (1997) Lancet 351:601–602

    Google Scholar 

  4. Levy SB (1998) Sci Am 278:46–53

    Article  PubMed  CAS  Google Scholar 

  5. Chin J (1996) New Sci 152:32–35

    CAS  Google Scholar 

  6. Scapin G, Blanchard JS (1998) Adv Enzymol 72:279–325

    PubMed  CAS  Google Scholar 

  7. Born TL, Blanchard JS (1999) Curr Opin Chem Biol 3:607–613

    Article  PubMed  CAS  Google Scholar 

  8. Girodeau J-M, Agouridas C, Masson M, Pineau R, LeGoffic F (1986) J Med Chem 29:1023–1030

    Article  PubMed  CAS  Google Scholar 

  9. Velasco AM, Leguina JI, Lazcano A (2002) J Mol Evol 55:445–459

    Article  PubMed  CAS  Google Scholar 

  10. Born TL, Zheng R, Blanchard JS (1998) Biochemistry 37:10478–10487

    Article  PubMed  CAS  Google Scholar 

  11. Karita M, Etterbeek ML, Forsyth MH, Tummuru MR, Blaser MJ (1997) Infect Immun 65:4158–4164

    PubMed  CAS  Google Scholar 

  12. Pavelka MS, Jacobs WR (1996) J Bacteriol 178:6496–6507

    PubMed  CAS  Google Scholar 

  13. Bouvier J, Richaud C, Higgins W, Bögler O, Stragier P (1992) J Bacteriol 174:5265–5271

    PubMed  CAS  Google Scholar 

  14. Lipscomb WN, Sträter N (1996) Chem Rev 96:2375–2433

    Article  PubMed  CAS  Google Scholar 

  15. Vallee BL, Auld DS (1990) Biochemistry 29:5647–5659

    Article  PubMed  CAS  Google Scholar 

  16. Vallee BL, Auld DS (1993) Proc Natl Acad Sci USA 90:2715–2718

    Article  PubMed  CAS  Google Scholar 

  17. Vallee BL, Auld DS (1993) Biochemistry 32:6493–6500

    Article  PubMed  CAS  Google Scholar 

  18. Chevrier B, Schalk C, D’Orchymont H, Rondeau J-M, Moras D, Tarnus C (1994) Structure 2:283–291

    Article  PubMed  CAS  Google Scholar 

  19. Bzymek KP, Holz RC (2004) J Biol Chem 279:31018–31025

    Article  PubMed  CAS  Google Scholar 

  20. Gill SC, von Hippel PH (1989) Anal Biochem 182:319–326

    Article  PubMed  CAS  Google Scholar 

  21. D’souza VM, Holz RC (1999) Biochemistry 38:11079–11085

    Article  PubMed  CAS  Google Scholar 

  22. Bergmann M, Stein WH (1939) J Biol Chem 129:609–618

    CAS  Google Scholar 

  23. Lin Y, Myhrman R, Schrag ML, Gelb MH (1988) J Biol Chem 263:1622–1627

    PubMed  CAS  Google Scholar 

  24. Bienvenue DL, Gilner DM, Davis RS, Bennett B, Holz RC (2003) Biochemistry 42:10756–10763

    Article  PubMed  CAS  Google Scholar 

  25. Javid-Majd F, Blanchard JS (2000) Biochemistry 39:1285–1293

    Article  PubMed  CAS  Google Scholar 

  26. Bennett B, Holz RC (1997) Biochemistry 36:9837–9846

    Article  PubMed  CAS  Google Scholar 

  27. D’souza VM, Bennett B, Copik AJ, Holz RC (2000) Biochemistry 39:3817–3826

    Article  PubMed  CAS  Google Scholar 

  28. Bennett B, Holz RC (1997) J Am Chem Soc 119:1923–1933

    Article  CAS  Google Scholar 

  29. Cosper NJ, Bienvenue DL, Shokes J, Gilner DM, Tsukamoto T, Scott R, Holz RC (2004) J Am Chem Soc 125:14654–14655

    Article  CAS  Google Scholar 

  30. Chevrier B, D’Orchymont H, Schalk C, Tarnus C, Moras D (1996) Eur J Biochem 237:393–398

    Article  PubMed  CAS  Google Scholar 

  31. Rowsell S, Pauptit RA, Tucker AD, Melton RG, Blow DM, Brick P (1997) Structure 5:337–347

    Article  PubMed  CAS  Google Scholar 

  32. Christianson DW, Lipscomb WN (1989) Acc Chem Res 22:62–69

    Article  CAS  Google Scholar 

  33. Baker JO, Prescott JM (1983) Biochemistry 22:5322–5331

    Article  CAS  Google Scholar 

  34. Segel IH (1993) Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  35. Holz RC (2002) Coord Chem Rev 232:5–26

    Article  CAS  Google Scholar 

  36. Bertini I, Luchinat C (1984) Adv Inorg Biochem 6:71–111

    PubMed  CAS  Google Scholar 

  37. Horrocks WD Jr, Ishley JN, Holmquist B, Thompson JS (1980) J Inorg Chem 12:131–141

    CAS  Google Scholar 

  38. Prescott JM, Wagner FW, Holmquist B, Vallee BL (1985) Biochemistry 24:5350–5356

    Article  PubMed  CAS  Google Scholar 

  39. Breece RM, Costello A, Bennett B, Sigdel TK, Matthews ML, Tierney DL, Crowder MW (2005) J Biol Chem 280:11074–11081

    Article  PubMed  CAS  Google Scholar 

  40. Prescott JM, Wilkes SH (1976) Methods Enzymol 45:530–543

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Krzysztof P. Bzymek for helpful discussions. This work was supported by the National Science Foundation (CHE-0549221, R.C.H.) and the Medical College of Wisconsin Research Affairs Committee (B.B.). The Bruker ESP-300E EPR spectrometer was purchased with funds provided by the National Science Foundation (BIR-9413530) and XSophe was purchased with funds from the National Institutes of Health (NIH RR01008, B.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Holz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, R., Bienvenue, D., Swierczek, S.I. et al. Kinetic and spectroscopic characterization of the E134A- and E134D-altered dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae . J Biol Inorg Chem 11, 206–216 (2006). https://doi.org/10.1007/s00775-005-0071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0071-8

Keywords

Navigation