Skip to main content
Log in

Temporäre Implantate für die endovaskuläre Applikation

Biodegradierbarer Polylactidstent

Temporary devices for endovascular application

Biodegradable polylactide stents

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Metallstents werden zunehmend in der Behandlung von vaskulären Erkrankungen eingesetzt, jedoch mit dem Nachteil eines permanenten Fremdkörpers im Organismus, wodurch die Gefahr einer Spätthrombosierung oder Neointimaausbildung besteht. Das anschließende Remodelling ist jedoch nur ein temporärer Vorgang, weshalb der Stent als Gefäßstütze nur vorübergehend benötigt wird. Ein biodegradierbarer, sich auflösender Stent stellt daher eine Alternative zum herkömmlichen Metallstent dar. Biodegradierbare Polylactidstents haben ihr Potenzial als Alternative zu Metallstents bereits demonstriert, allerdings sind bis zum heutigen Tag klinische Erfahrungen nur sehr begrenzt vorhanden. Die wissenschaftliche Zielsetzung der vorliegenden Arbeit lag daher in der tierexperimentellen Charakterisierung der physikalischen und biologischen Eigenschaften eines biodegradierbaren Röhrchenstents aus Poly-L-Lactid (PLLA) mit und ohne Sirolimusbeschichtung (polymerer Drug-eluting-Stent).

Abstract

Although vascular intervention using metal stents has become the gold standard of care for stenotic vessels, the lifelong persistence of metal stents within the arteries might induce long-term effects, bearing the risk of late thrombosis finally resulting in neointimal hyperplasia. However, since the vessel wall may undergo positive remodeling after stenting, the need for mechanical scaffolding of an artery may be only temporary. Thus, the use of biodegradable devices, which eventually degrade and leave only the remodeled vessel, might decrease restenosis rates. Polymeric biodegradable polylactide stents have demonstrated this potential as an alternative to standard metal stents, but to date, the human experiences with these devices are limited. The aim of this study was therefore to summarize our experiences in dealing with a biodegradable slotted tube stent made of poly-L-lactide (PLLA) with incorporation of Sirolimus (polymeric drug eluting stent).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Bünger CM, Grabow N, Sternberg K et al. (2006) Iliac anastomotic stenting with a biodegradable poly-L-lactide stent: a preliminary study after 1 and 6 weeks. J Endovasc Ther 13: 539–548

    Article  PubMed  Google Scholar 

  2. Bünger CM, Grabow N, Kroger C et al. (2006) Iliac anastomotic stenting with a sirolimus-eluting biodegradable poly-L-lactide stent: a preliminary study after 6 weeks. J Endovasc Ther 13: 630–639

    Article  PubMed  Google Scholar 

  3. Bünger CM, Grabow N, Raab U et al. (2007) Anastomotic stenting in a porcine aortoiliac graft model. Lab Anim 41: 71–79

    Article  PubMed  Google Scholar 

  4. Bünger CM, Grabow N, Sternberg K et al. (2007) Sirolimus-eluting biodegradable poly-L-lactide stent for peripheral vascular application: a preliminary study in porcine carotid arteries. J Surg Res 139: 77–82

    Article  PubMed  CAS  Google Scholar 

  5. Bünger CM, Grabow N, Sternberg K et al. (2007) A biodegradable stent based on poly(l-lactide) and poly(4-hydroxybutyrate) for peripheral vascular application: preliminary experience in the pig. J Endovasc Ther 14: 725–733

    Article  PubMed  Google Scholar 

  6. Erne P, Schier M, Resink TJ (2006) The road to bioabsorbable stents: reaching clinical reality? Cardiovasc Intervent Radiol 29: 11–16

    Article  PubMed  Google Scholar 

  7. Furman MI, Frelinger III AL, Michelson AD (2000) Antithrombotic therapy in the cardiac catheterization laboratory: focus on antiplatelet agents. Curr Cardiol Rep 2: 386–394

    Article  PubMed  CAS  Google Scholar 

  8. Grabow N, Schlun M, Sternberg K et al. (2005) Mechanical properties of laser cut poly-L-lactide micro-specimens: implications for stent design, manufacture, and sterilization. J Biomech Eng 127: 25–31

    Article  PubMed  Google Scholar 

  9. Grabow N, Bünger CM, Sternberg K et al. (2007) Mechanical properties of a biodegradable balloon-expandable stent from poly(L-lactide) for peripheral vascular applications. J Med Devices 1: 84–88

    Article  Google Scholar 

  10. Grabow N, Bünger CM, Schultze C et al. (2007) A biodegradable slotted tube stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Ann Biomed Eng 35: 2031–2038

    Article  PubMed  Google Scholar 

  11. Harker LA, Boissel JP, Pilgrim AJ et al. (1999) Comparative safety and tolerability of clopidogrel and aspirin: results from CAPRIE. CAPRIE Steering Committee and Investigators. Clopidogrel versus aspirin in patients at risk of ischaemic events. Drug Saf 21: 325–335

    Article  PubMed  CAS  Google Scholar 

  12. Herbert JM, Tissinier A, Defreyn G et al. (1993) Inhibitory effect of clopidogrel on platelet adhesion and intimal proliferation after arterial injury in rabbits. Arterioscler Thromb 13: 1171–1179

    PubMed  CAS  Google Scholar 

  13. Hietala EM, Salminen US, Stahls A et al. (2001) Biodegradation of the copolymeric polylactide stent. Long-term follow-up in a rabbit aorta model. J Vasc Res 38: 361–369

    Article  PubMed  CAS  Google Scholar 

  14. Iakovou I, Schmidt T, Bonizzoni E et al. (2005) Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293: 2126–2130

    Article  PubMed  CAS  Google Scholar 

  15. Kornowski R, Hong MK, Tio FO et al. (1998) In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 31: 224–230

    Article  PubMed  CAS  Google Scholar 

  16. Kuchulakanti PK, Chu WW, Torguson R et al. (2006) Correlates and long-term outcomes of angiographically proven stent thrombosis with sirolimus-and paclitaxel-eluting stents. Circulation 113: 1108–1113

    Article  PubMed  CAS  Google Scholar 

  17. Leon MB, Baim DS, Popma JJ et al. (1998) A clinical trial comparing three antithrombotic-drug regimens after coronary-artery stenting. Stent Anticoagulation Restenosis Study Investigators. N Engl J Med 339: 1665–1671

    Article  PubMed  CAS  Google Scholar 

  18. Morice MC, Serruys PW, Sousa JE et al. (2002) A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 346: 1773–1780

    Article  PubMed  CAS  Google Scholar 

  19. Ong AT, McFadden EP, Regar E et al. (2005) Late angiographic stent thrombosis (LAST) events with drug-eluting stents. J Am Coll Cardiol 45: 2088–2092

    Article  PubMed  CAS  Google Scholar 

  20. Ormiston JA, Webster MW, Armstrong G (2007) First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-L-lactic acid everolimus-eluting coronary stent. Catheter Cardiovasc Interv 69: 128–131

    Article  PubMed  Google Scholar 

  21. Schwartz RS, Huber KC, Murphy JG et al. (1992) Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 19: 267–274

    Article  PubMed  CAS  Google Scholar 

  22. Schomig A, Neumann FJ, Kastrati A et al. (1996) A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N Engl J Med 334: 1084–1089

    Article  PubMed  CAS  Google Scholar 

  23. Setacci C, Donato G de, Setacci F et al. (2005) In-stent restenosis after carotid angioplasty and stenting: a challenge for the vascular surgeon. Eur J Vasc Endovasc Surg 29: 601–607

    Article  PubMed  CAS  Google Scholar 

  24. Su SH, Chao RY, Landau CL et al. (2003) Expandable bioresorbable endovascular stent. I. Fabrication and properties. Ann Biomed Eng 31: 667–677

    Article  PubMed  Google Scholar 

  25. Tamai H, Igaki K, Kyo E et al. (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102: 399–404

    PubMed  CAS  Google Scholar 

  26. Uurto I, Juuti H, Parkkinen J et al. (2004) Biodegradable self-expanding poly-L/D-lactic acid vascular stent: a pilot study in canine and porcine iliac arteries. J Endovasc Ther 11: 712–718

    Article  PubMed  Google Scholar 

  27. Uurto I, Mikkonen J, Parkkinen J et al. (2005) Drug-eluting biodegradable poly-D/L-lactic acid vascular stents: an experimental pilot study. J Endovasc Ther 12: 371–379

    Article  PubMed  Google Scholar 

  28. Giessen WJ van der, Lincoff AM, Schwartz RS et al. (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94: 1690–1697

    PubMed  Google Scholar 

  29. Virmani R, Kolodgie FD, Farb A (2004) Drug-eluting stents: are they really safe? Am Heart Hosp J 2: 85–88

    Article  PubMed  Google Scholar 

  30. Vogt F, Stein A, Rettemeier G et al. (2004) Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. Eur Heart J 25: 1330–1340

    Article  PubMed  CAS  Google Scholar 

  31. Waksman R (2006) Biodegradable stents: they do their job and disappear. J Invasive Cardiol 18: 70–74

    PubMed  Google Scholar 

Download references

Danksagung

Diese Arbeit wurde unterstützt durch die „Fakultätsinterne Forschungsförderung“ (FORUN 989057, 989046) der Universität Rostock. Die tierexperimentellen Arbeiten erfolgten in enger Zusammenarbeit mit dem Institut für experimentelle Chirurgie mit zentraler Versuchstierhaltung der Universität Rostock (Direktor: Prof. Dr. med. B. Vollmar). Frau Anne-Marie Beck, Leibniz-Forschungslaboratorien der Klinik für Thorax-, Herz- und Gefäßchirurgie der Medizinischen Hochschule Hannover, verdanken wir die Einbettung und das Schneiden der stenttragenden Gewebeproben, Herrn Wodetzki die exzellente grafische Darstellung des Stent-Prothesen-Modells.

Wir danken dem Journal of Endovascular Therapy (©International Society of Endovascular Specialists) für die Erlaubnis zur partiellen Reproduktion aus den Manuskripten [1, 2, 5].

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.M. Bünger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bünger, C., Grabow, N., Sternberg, K. et al. Temporäre Implantate für die endovaskuläre Applikation. Gefässchirurgie 13, 99–106 (2008). https://doi.org/10.1007/s00772-008-0586-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-008-0586-8

Schlüsselwörter

Keywords

Navigation