Skip to main content
Log in

A Biodegradable Slotted Tube Stent Based on Poly(l-lactide) and Poly(4-hydroxybutyrate) for Rapid Balloon-Expansion

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Safe vascular stent application requires rapid expansion of the stent to minimize the risk of procedural ischemia. While high expansion speeds can be achieved with metallic stents, they are not necessarily feasible with biodegradable polymeric stents due to the viscoelastic material behavior. This study reports on a novel biodegradable polymer blend material based on poly(l-lactide) (PLLA) and poly(4-hydroxybutyrate) (P4HB), and describes the mechanical properties and in vitro degradation behavior of a balloon-expandable slotted tube stent concept. The stent prototypes with nominal dimensions of 6.0 × 25 mm were manufactured by laser machining of solution cast PLLA/P4HB tubes (I.D. = 2.8 mm, d = 300 μm). The stents were expanded within 1 min by balloon inflation to 8 bar, after 5 min preconditioning in 37 °C water. Recoil and collapse pressure were 4.2% and 1.1 bar, respectively. During in vitro degradation collapse pressure initially increased to a maximum at 4 w and then decreased thereafter. After 48 w, molecular weight was decreased by 82%. In summary, the PLLA/P4HB slotted tube stents allowed for rapid balloon-expansion and exhibited adequate mechanical scaffolding properties suitable for a broad range of vascular and non-vascular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anderson H. V., P. P. Leimgruber, G. S. Roubin, D. L. Nelson, A. R. Gruentzig 1985 Distal coronary artery perfusion during percutaneous transluminal coronary angioplasty. Am. Heart J. 110:720–726

    Article  PubMed  CAS  Google Scholar 

  2. Biamino, G. Biodegradable stents in the sfa: are they the answer? International Symposium on Endovascular Therapy 2006

  3. Bünger, C. M., N. Grabow, K. Sternberg, M. Goosmann, K. P. Schmitz, H. J. Kreutzer, H. Ince, S. Klische, C. A. Nienaber, D. P. Martin, S. F. Williams, E. Klar, and W. Schareck. A biodegradable stent based on poly(l-lactide) and poly(4-hydroxybutyrate) for peripheral vascular application: preliminary experience in the pig. J. Endovasc. Ther. to appear October 2007

  4. Bünger C. M., N. Grabow, K. Sternberg, L. Ketner, C. Kröger, B. Lorenzen, K. Hauenstein, K. P. Schmitz, H. J. Kreutzer, D. Lootz, H. Ince, C. A. Nienaber, E. Klar, W. Schareck 2006 Iliac anastomotic stenting with a biodegradable poly-l-lactide stent: A preliminary study after 1 and 6 weeks. J. Endovasc. Ther. 13:539–548

    Article  PubMed  Google Scholar 

  5. Colombo A., P. Hall, S. Nakamura, Y. Almagor, L. Maiello, G. Martini, A. Gaglione, S. L. Goldberg, J. M. Tobis 1995 Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 91:1676–1688

    PubMed  CAS  Google Scholar 

  6. Erne P., M. Schier, T. J. Resink 2005 The road to bioabsorbable stents: reaching clinical reality? Cardiovasc. Inter. Rad. 29:11–16

    Article  Google Scholar 

  7. Fischer E. W., H. J. Sterzel, G. Wegner 1973 Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid.-Z. Z. Polym. 251:980–990

    Article  CAS  Google Scholar 

  8. Grabow N., C. Bunger, K. Sternberg, S. Mews, K. Schmohl, K. P. Schmitz 2007 Mechanical properties of a biodegradable balloon-expandable stent from poly(l-lactide) for peripheral vascular applications. ASME J. Med. Dev. 1:84–88

    Google Scholar 

  9. Grabow N., S. Mews, K. Schmohl, K. Sternberg, C. M. Bünger, K. P. Schmitz 2006 Long-term in vitro degradation study for a biodegradable PLLA stent. Biomaterialien (München) 7:154

    Google Scholar 

  10. Grabow N., M. Schlun, K. Sternberg, N. Hakansson, S. Kramer, K. P. Schmitz 2005 Mechanical properties of laser cut poly(l-lactide) micro-specimens: Implications for stent design, manufacture, and sterilization. ASME J. Biomech. Eng. 127:25–31

    Article  Google Scholar 

  11. Herzog C., C. Grebe, A. Mahnken, J. O. Balzer, M. G. Mack, S. Zangos, H. Ackermann, S. Schaller, T. Seifert, B. Ohnesorge, T. J. Vogl 2005 Peripheral artery stent visualization and in-stent stenosis analysis in 16-row computed tomography: An in-vitro evaluation. Eur. Radiol. 15:2276–2283

    Article  PubMed  Google Scholar 

  12. Holmes D. R. Jr., J. W. Moses, J. Schofer, M. C. Morice, E. Schampaert, M. B. Leon 2006 Cause of death with bare metal and sirolimus-eluting stents. Eur. Heart J. 27:2815–2822

    Article  PubMed  CAS  Google Scholar 

  13. Isotalo T. M., J. P. Nuutine, A. Vaajanen, P. M. Martikainen, M. Laurila, P. Tormala, M. Talja, T. L. Tammela 2006 Biocompatibility properties of a new braided biodegradable urethral stent: a comparison with a biodegradable spiral and a braided metallic stent in the rabbit urethra. BJU Int. 97:856–859

    Article  PubMed  CAS  Google Scholar 

  14. Isotalo T., M. Talja, T. Valimaa, P. Tormala, T. L. Tammela 2002 A bioabsorbable self-expandable, self-reinforced poly-l-lactic acid urethral stent for recurrent urethral strictures: long-term results. J. Endourol. 16:759–762

    Article  PubMed  CAS  Google Scholar 

  15. Joner M., A. V. Finn, A. Farb, E. K. Mont, F. D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H. K. Gold, R. Virmani 2006 Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 48:193–202

    Article  PubMed  Google Scholar 

  16. Lauto A., M. Ohebshalom, M. Esposito, J. Mingin, P. S. Li, D. Felsen, M. Goldstein, D. P. Poppas 2001 Self-expandable chitosan stent: design and preparation. Biomaterials 22:1869–1874

    Article  PubMed  CAS  Google Scholar 

  17. Martin D. P., D. F. Williams 2003 Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable material. Biochem. Eng. J. 16:97–105

    Article  CAS  Google Scholar 

  18. Mitomo H., W. C. Hsieh, K. Nishiwaki, K. Kasuya, Y. Doi 2001 Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by comamonas acidovorans. Polymer 42:3455–3461

    Article  CAS  Google Scholar 

  19. Ormiston J. A., M. W. Webster, G. Armstrong 2006 First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-l-lactic acid everolimus-eluting coronary stent. Catheter. Cardiovasc. Interv. 69:128–131

    Article  Google Scholar 

  20. Schmidt W., R. Andresen, P. Behrens, K. P. Schmitz 2002 Characteristic mechanical properties of balloon-expandable peripheral stent systems. Rofo 174:1430–1437

    PubMed  CAS  Google Scholar 

  21. Schmidt W., K. P. Schmitz. Devices. In: Lanzer P., editor. Mastering of Endovascular Techniques – a Guide to Excellence. Philadelphia: Lippincott Williams & Wilkins; 2006, pp. 114–135

    Google Scholar 

  22. Su S. H., R. Y. Chao, C. L. Landau, K. D. Nelson, R. B. Timmons, R. S. Meidell, R. C. Eberhart 2003 Expandable bioresorbable endovascular stent. I. Fabrication and properties. Ann. Biomed. Eng. 31:667–677

    Article  PubMed  Google Scholar 

  23. Tamai H., K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, H. Uehata 2000 Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404

    PubMed  CAS  Google Scholar 

  24. Tan L. P., S. S. Venkatraman, J. F. Joso, F. Y. Boey 2006 Collapse pressures of bilayered biodegradable stents. J. Biomed. Mater. Res. B Appl. Biomater. 79:102–107

    PubMed  CAS  Google Scholar 

  25. Tanimoto, S., P. W. Serruys, L. Thuesen, D. Dudek, B. de Bruyne, B. Chevalier, and J. A. Ormiston. Comparison of in vivo acute stent recoil between the bioabsorbable everolimus-eluting coronary stent and the everolimus-eluting cobalt chromium coronary stent: insights from the ABSORB and SPIRIT trials. Catheter. Cardiovasc. Interv. 2007

  26. Uurto I., J. Mikkonen, J. Parkkinen, L. Keski-Nisula, T. Nevalainen, M. Kellomaki, P. Tormala, J. P. Salenius 2005 Drug-eluting biodegradable poly-d/l-lactic acid vascular stents: an experimental pilot study. J. Endovasc. Ther. 12:371–379

    Article  PubMed  Google Scholar 

  27. Venkatraman S. S., L. P. Tan, J. F. Joso, Y. C. Boey, X. Wang 2006 Biodegradable stents with elastic memory. Biomaterials 27:1573–1578

    Article  PubMed  CAS  Google Scholar 

  28. Vogt F., A. Stein, G. Rettemeier, N. Krott, R. Hoffmann, J. vom Dahl, A. K. Bosserhoff, W. Michaeli, P. Hanrath, C. Weber, R. Blindt 2004 Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. Eur. Heart J. 25:1330–1340

    Article  PubMed  CAS  Google Scholar 

  29. Zilberman M., R. C. Eberhart 2006 Drug-eluting bioresorbable stents for various applications. Annu. Rev. Biomed. Eng. 8:153–180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation to Dipl.-Ing. Peter Behrens and Dr.-Ing. Wolfram Schmidt, Institute for Biomedical Engineering, University of Rostock, for sharing their expertise in stent testing. Dipl.-Ing. Steffen Mews, Institute for Biomedical Engineering, University of Rostock, is gratefully acknowledged for his technical support during the stent degradation study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Grabow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabow, N., Bünger, C.M., Schultze, C. et al. A Biodegradable Slotted Tube Stent Based on Poly(l-lactide) and Poly(4-hydroxybutyrate) for Rapid Balloon-Expansion. Ann Biomed Eng 35, 2031–2038 (2007). https://doi.org/10.1007/s10439-007-9376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9376-9

Keywords

Navigation