Skip to main content
Log in

Advances in the study of protein–DNA interaction

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Protein–DNA interaction plays an important role in many biological processes. The classical methods and the novel technologies advanced have been developed for the interaction of protein–DNA. Recent developments of these methods and research achievements have been reviewed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251(5000):1468–1470. doi:10.1126/science.251.5000.1468

    Article  PubMed  CAS  Google Scholar 

  • Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180

    Article  CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  PubMed  Google Scholar 

  • Brenowitz M, Senear DF, Shea MA, Ackers GK (1986) Quantitative DNase footprint titration: a method for studying protein–DNA interactions. Meth Enzymol 130:132–181

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz M, Senear DF, Kingston RE (2001) DNase I footprint analysis of protein–DNA binding, Chap. 12, Unit 12–14. In: Ausubel FM et al (eds) Current protocols in molecular biology. doi:10.1002/0471142727.mb1204s07

  • Brown D, Brown J, Kang C, Gold L, Allen P (1997) Single-stranded RNA recognition by the bacteriophage T4 translational repressor, regA. J Biol Chem 272(23):14969–14974

    Article  PubMed  CAS  Google Scholar 

  • Buck MJ, Nobel AB, Lieb JD (2005) ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol 6(11):R97. doi:10.1186/gb-2005-6-11-r97

    Article  PubMed  Google Scholar 

  • Carey M, Smale ST (2007) Methylation interference assay. CSH protocols 2007. doi:10.1101/pdb.prot4812

  • Connaghan-Jones KD, Moody AD, Bain DL (2008) Quantitative DNase footprint titration: a tool for analyzing the energetics of protein–DNA interactions. Nat Protoc 3(5):900–914. doi:10.1038/nprot.2008.53

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg AE, Dingman CW, Peacock AC (1969) Electrophoretic characterization of bacterial polyribosomes in agarose–acrylamide composite gels. J Mol Biol 41(1):139–147

    Article  PubMed  CAS  Google Scholar 

  • Deplancke B, Dupuy D, Vidal M, Walhout AJ (2004) A gateway-compatible yeast one-hybrid system. Genome Res 14(10B):2093–2101. doi:10.1101/gr.2445504

    Google Scholar 

  • Despeyroux D, Walker N, Pearce M, Fisher M, McDonnell M, Bailey SC, Griffiths GD, Watts P (2000) Characterization of ricin heterogeneity by electrospray mass spectrometry, capillary electrophoresis, and resonant mirror. Anal Biochem 279(1):23–36. doi:10.1006/abio.1999.4423

    Article  PubMed  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi:10.1038/346818a0

    Article  PubMed  CAS  Google Scholar 

  • Feng SY, Ota K, Ito T (2010) A yeast one-hybrid system to screen for methylated DNA-binding proteins. Nucleic Acids Res 38(20):e189. doi:10.1093/nar/gkq757

    Article  PubMed  Google Scholar 

  • Feng H, Beck J, Nassal M, Hu KH (2011) A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS One 6(11):e27862. doi:10.1371/journal.pone.0027862

    Article  PubMed  CAS  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340(6230):245–246. doi:10.1038/340245a0

    Article  PubMed  CAS  Google Scholar 

  • Fullwood MJ, Ruan Y (2009) ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem 107(1):30–39. doi:10.1002/jcb.22116

    Article  PubMed  CAS  Google Scholar 

  • Gupta G, Sharma PK, Sikarwar B, Merwyn S, Kaushik S, Boopathi M, Agarwal GS, Singh B (2012) Surface plasmon resonance immunosensor for the detection of Salmonella typhi antibodies in buffer and patient serum. Biosens Bioelectron 36(1):95–102. doi:10.1016/j.bios.2012.03.046

    Article  PubMed  CAS  Google Scholar 

  • Hayano T, Yamauchi Y, Asano K, Tsujimura T, Hashimoto S, Isobe T, Takahashi N (2008) Automated SPR-LC-MS/MS system for protein interaction analysis. J Proteome Res 7(9):4183–4190. doi:10.1021/pr700834n

    Article  PubMed  CAS  Google Scholar 

  • Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat Protoc 2(8):1849–1861. doi:10.1038/nprot.2007.249

    Article  PubMed  CAS  Google Scholar 

  • Henriksson-Peltola P, Sehlen W, Haggard-Ljungquist E (2007) Determination of the DNA-binding kinetics of three related but heteroimmune bacteriophage repressors using EMSA and SPR analysis. Nucleic Acids Res 35(10):3181–3191. doi:10.1093/nar/gkm172

    Article  PubMed  CAS  Google Scholar 

  • Hoa XD, Kirk AG, Tabrizian M (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron 23(2):151–160. doi:10.1016/j.bios.2007.07.001

    Article  PubMed  CAS  Google Scholar 

  • Horak CE, Snyder M (2002) ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol 350:469–483

    Article  PubMed  CAS  Google Scholar 

  • Jahanmir J, Haggar BG, Hayes JB (1992) The scanning probe microscope. Scanning Microsc 6(3):625–660

    PubMed  CAS  Google Scholar 

  • Khan SH, Farkas K, Kumar R, Ling J (2012) A versatile method to measure the binding to basic proteins by surface plasmon resonance. Anal Biochem 421(2):385–390. doi:10.1016/j.ab.2011.12.006

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Hwang SB, Chung IK, Lee J (2003) Sequence-specific binding to telomeric DNA by CEH-37, a homeodomain protein in the nematode Caenorhabditis elegans. J Biol Chem 278(30):28038–28044. doi:10.1074/jbc.M302192200

    Article  PubMed  CAS  Google Scholar 

  • Lane D, Prentki P, Chandler M (1992) Use of gel retardation to analyze protein–nucleic acid interactions. Microbiol Rev 56(4):509–528

    PubMed  CAS  Google Scholar 

  • Lehming N, Thanos D, Brickman JM, Ma J, Maniatis T, Ptashne M (1994) An HMG-like protein that can switch a transcriptional activator to a repressor. Nature 371(6493):175–179. doi:10.1038/371175a0

    Article  PubMed  CAS  Google Scholar 

  • Li JJ, Herskowitz I (1993) Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262(5141):1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Ling J, Liao H, Clark R, Wong MS, Lo DD (2008) Structural constraints for the binding of short peptides to claudin-4 revealed by surface plasmon resonance. J Biol Chem 283(45):30585–30595. doi:10.1074/jbc.M803548200

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Dong Y, Jauw J, Linman MJ, Cheng Q (2010) Highly sensitive detection of protein toxins by surface plasmon resonance with biotinylation-based inline atom transfer radical polymerization amplification. Anal Chem 82(9):3679–3685. doi:10.1021/ac1000114

    Article  PubMed  CAS  Google Scholar 

  • Matos RG, Barbas A, Arraiano CM (2010) Comparison of EMSA and SPR for the characterization of RNA–RNase II complexes. Protein J 29(6):394–397. doi:10.1007/s10930-010-9265-1

    Article  PubMed  CAS  Google Scholar 

  • Mueller PR, Wold B (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246(4931):780–786

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Isermann B, Ducker C, Salehi M, Meyer M, Friedrich M, Madhusudhan T, Oldenburg J, Mayer G, Potzsch B (2009) An exosite-specific ssDNA aptamer inhibits the anticoagulant functions of activated protein C and enhances inhibition by protein C inhibitor. Chem Biol 16(4):442–451. doi:10.1016/j.chembiol.2009.03.007

    Article  PubMed  Google Scholar 

  • Murphy MB, Fuller ST, Richardson PM, Doyle SA (2003) An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res 31(18):e110

    Article  PubMed  Google Scholar 

  • Nagaraj VH, O’Flanagan RA, Sengupta AM (2008) Better estimation of protein–DNA interaction parameters improve prediction of functional sites. BMC Biotechnol 8:94. doi:10.1186/1472-6750-8-94

    Article  PubMed  Google Scholar 

  • Okorafor M, Clayton GM (2011) Modeling scanning probe microscope lateral dynamics using the probe-surface interaction signal. Rev Sci Instrum 82(3):033707. doi:10.1063/1.3548835

    Article  PubMed  CAS  Google Scholar 

  • Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25(3):99–104

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Wang L, He X, Tian Y, Liu G, Tan H (2011) SabR enhances nikkomycin production via regulating the transcriptional level of sanG, a pathway-specific regulatory gene in Streptomyces ansochromogenes. BMC Microbiol 11:164. doi:10.1186/1471-2180-11-164

    Article  PubMed  CAS  Google Scholar 

  • Pollet J, Delport F, Janssen KP, Jans K, Maes G, Pfeiffer H, Wevers M, Lammertyn J (2009) Fiber optic SPR biosensing of DNA hybridization and DNA–protein interactions. Biosens Bioelectron 25(4):864–869. doi:10.1016/j.bios.2009.08.045

    Article  PubMed  CAS  Google Scholar 

  • Reimer JJ, Turck F (2010) Genome-wide mapping of protein–DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part A: ChIP-chip molecular methods. Methods Mol Biol (Clifton, NJ) 631:139–160. doi:10.1007/978-1-60761-646-7_12

    Google Scholar 

  • Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, Marra M, Snyder M, Jones S (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657. doi:10.1038/nmeth1068

    Article  PubMed  CAS  Google Scholar 

  • Schaup HW, Green M, Kurland CG (1970) Molecular interactions of ribosomal components. I. Identification of RNA binding sites for individual 30S ribosomal proteins. Mol Gen Genet MGG 109(3):193–205

    Article  CAS  Google Scholar 

  • Sengupta AM, Djordjevic M, Shraiman BI (2002) Specificity and robustness in transcription control networks. Proc Natl Acad Sci USA 99(4):2072–2077. doi:10.1073/pnas.022388499

    Article  PubMed  CAS  Google Scholar 

  • Smith AJP, Humphries SE (2009) Characterization of DNA-binding proteins using multiplexed competitor EMSA. J Mol Biol 385(3):714–717. doi:10.1016/j.jmb.2008.11.035

    Article  PubMed  CAS  Google Scholar 

  • Stenger D, Gruissem W, Baginsky S (2004) Mass spectrometric identification of RNA binding proteins from dried EMSA gels. J Proteome Res 3(3):662–664

    Article  PubMed  CAS  Google Scholar 

  • Stormo GD, Fields DS (1998) Specificity, free energy and information content in protein–DNA interactions. Trends Biochem Sci 23(3):109–113

    Article  PubMed  CAS  Google Scholar 

  • Strong CL, Lanchy JM, Lodmell JS (2011) Viral SELEX reveals individual and cooperative roles of the C-box and G-box in HIV-2 replication. RNA 17(7):1307–1320. doi:10.1261/rna.2564311

    Article  PubMed  CAS  Google Scholar 

  • Surina ER, Morozkina EV, Marchenko EV, Ter-Avanesian MD, Benevolenskii SV (2009) Selection of DNA aptamers, specifically interacting with fibrillar form of the yeast Sup35 protein. Mol Biol 43(4):682–688

    Article  CAS  Google Scholar 

  • Szabo A, Stolz L, Granzow R (1995) Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr Opin Struct Biol 5(5):699–705

    Article  PubMed  CAS  Google Scholar 

  • Tong Y, Falk J (2009) Genome-wide analysis for protein–DNA interaction: ChIP-chip. Methods Mol Biol (Clifton, NJ) 590:235–251. doi:10.1007/978-1-60327-378-7_15

    Google Scholar 

  • Truax AD, Greer SF (2012) ChIP and Re-ChIP assays: investigating interactions between regulatory proteins, histone modifications, and the DNA sequences to which they bind. Methods Mol Biol (Clifton, NJ) 809:175–188. doi:10.1007/978-1-61779-376-9_12

  • Wilson S, Howell S (2002) High-throughput screening in the diagnostics industry. Biochem Soc Trans 30(4):794–797. doi:10.1042/

    Article  PubMed  CAS  Google Scholar 

  • Won J, Kim TK (2006) Histone modifications and transcription factor binding on chromatin ChIP-PCR assays. Methods Mol Biol (Clifton, NJ) 325:273–283

    Google Scholar 

  • Wu S, Wang J, Zhao W, Pounds S, Cheng C (2010) ChIP-PaM: an algorithm to identify protein–DNA interaction using ChIP-Seq data. Theor Biol Med Model 7:18. doi:10.1186/1742-4682-7-18

    Article  PubMed  Google Scholar 

  • Xia N, Liu L, Yi X, Wang J (2009) Studies of interaction of tumor suppressor p53 with apo-MT using surface plasmon resonance. Anal Bioanal Chem 395(8):2569–2575. doi:10.1007/s00216-009-3174-1

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Burgess SM (2012) Using a yeast inverse one-hybrid system to identify functional binding sites of transcription factors. Methods Mol Biol (Clifton, NJ) 786:275–290. doi:10.1007/978-1-61779-292-2_17

  • Zhang Y, Zou Q (2012) High-speed force load in force measurement in liquid using scanning probe microscope. Rev Sci Instrum 83(1):013707. doi:10.1063/1.3678320

    Article  PubMed  Google Scholar 

  • Zhang JF, Ma L, Liu X, Lu YT (2004) Using capillary electrophoresis with laser-induced fluorescence to study the interaction of green fluorescent protein-labeled calmodulin with Ca2+- and calmodulin-binding protein. J Chromatogr B Anal Technol Biomed Life Sci 804(2):413–420. doi:10.1016/j.jchromb.2004.01.054

    Article  CAS  Google Scholar 

  • Zhao Y, Granas D, Stormo GD (2009) Inferring binding energies from selected binding sites. PLoS Comput Biol 5(12):e1000590. doi:10.1371/journal.pcbi.1000590

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest about this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, YH., Huang, H. Advances in the study of protein–DNA interaction. Amino Acids 43, 1141–1146 (2012). https://doi.org/10.1007/s00726-012-1377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1377-9

Keywords

Navigation