Skip to main content
Log in

Incorporation of 2,3-Disubstituted-1,4-Naphthoquinones into the A1 Binding Site of Photosystem I Studied by EPR and ENDOR Spectroscopy

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Transient electron paramagnetic resonance and pulsed electron-nuclear double resonance (ENDOR) spectra of the state \( P_{700}^{ \cdot + } A_{1}^{ \cdot - } \) in photosystem I containing a series of non-native naphthoquinones (NQs) are presented. Previous studies have shown that quinones bind to the A1 site with only one of their carbonyl groups H-bonded to the protein and that the asymmetric H-bond produces an odd alternant distribution of the spin density within the quinone. It is known that the native phylloquinone binds with its methyl group meta and its phytyl tail ortho to the H-bonded carbonyl. Monosubstituted NQs with short alkyl chains have been found to bind preferentially with their alkyl side groups meta to the H-bonded carbonyl. The selectivity of the binding site toward methyl and short chain substituents is studied by incorporating disubstituted NQs that have a methyl group at the 2-position and a short chain at the 3-position of the quinone ring. The hyperfine couplings (hfcs) of the methyl group protons are sensitive to the spin density distribution on the quinone and are used to deduce the position of the methyl group relative to the H-bonded carbonyl. The measured methyl proton hfcs indicate that the disubstituted quinones bind exclusively with their methyl group in the meta position relative to the H-bonded carbonyl and no evidence for binding with the methyl group in the ortho position is found. The disubstituted quinones have also been chosen to study the effect of electron withdrawing substituents on the spin density distribution. When the short chain contains electronegative atoms such as sulfur or chlorine, the methyl proton hfcs of the quinone in the A1 binding site are found to be significantly larger than those of 2-methyl-1,4-naphthoquinone and phylloquinone in the same environment. Solution ENDOR measurements of the quinone radical anions in isopropanol and density functional theory (DFT) calculations in vacuo show that this increase in the hfcs is mostly intrinsic to the quinones due to the electron-withdrawing ability of the short chain and is not a result of differences in the binding to the protein. The DFT calculations suggest that the main reason for the increased methyl proton hfcs is delocalization of the singly occupied molecular orbital onto the side chain, which leads to an increase of the spin density on the neighboring carbon, which carries methyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Golbeck (ed.), Photosystem I. The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase (Springer, Dordrecht, 2006)

  2. T. Wydrzynski, K. Satoh (eds.), Photosystem II. The Light-Driven Water:Plastoquinone Oxidoreductase (Springer, Dordrecht, 2005)

  3. N. Srinivasan, J.H. Golbeck, Biochim. Biophys. Acta 1787, 1057–1088 (2009)

    Google Scholar 

  4. V. Petrouleas, A.R. Crofts, in Photosystem II. The Light-Driven Water:Plastoquinone Oxidoreductase, ed. by T. Wydrzynski, K. Satoh (Springer, Dordrecht, 2005), pp. 177–206

  5. A. Krieger, A.W. Rutherford, G.N. Johnson, Biochim Biophys. Acta 1229, 193–201 (1995)

    Article  Google Scholar 

  6. K. Brettel, Biochim. Biophys. Acta 1318, 322–373 (1997)

    Article  Google Scholar 

  7. R.C. Prince, M.R. Gunner, P.L. Dutton, in Function of Quinones in Energy Conserving Systems, ed. by B.L. Trumpower (Academic Press, New York, 1982)

  8. R.C. Prince, P.L. Dutton, J.M. Bruce, FEBS Lett. 160, 273–276 (1983)

    Article  Google Scholar 

  9. T.W. Johnson, G.Z. Shen, B. Zybailov, D. Kolling, R. Reategui, S. Beauparlant, I.R. Vassiliev, D.A. Bryant, A.D. Jones, J.H. Golbeck, P.R. Chitnis, J. Biol. Chem. 275, 8523–8530 (2000)

    Article  Google Scholar 

  10. B. Zybailov, A. van der Est, S.G. Zech, C. Teutloff, T.W. Johnson, G.Z. Shen, R. Bittl, D. Stehlik, P.R. Chitnis, J.H. Golbeck, J. Biol. Chem. 275, 8531–8539 (2000)

    Article  Google Scholar 

  11. A.Y. Semenov, I.R. Vassiliev, A. van der Est, M.D. Mamedov, B. Zybailov, G.Z. Shen, D. Stehlik, B.A. Diner, P.R. Chitnis, J.H. Golbeck, J. Biol. Chem. 275, 23429–23438 (2000)

    Article  Google Scholar 

  12. I. Sieckman, A. van der Est, H. Bottin, P. Setif, D. Stehlik, FEBS Lett. 284, 98–102 (1991)

    Article  Google Scholar 

  13. R.R. Rustandi, S.W. Snyder, J. Biggins, J.R. Norris, M.C. Thurnauer, Biochim. Biophys. Acta 1101, 311–320 (1992)

    Article  Google Scholar 

  14. R.R. Rustandi, S.W. Snyder, L.L. Feezel, T.J. Michalski, J.R. Norris, M.C. Thurnauer, J. Biggins, Biochemistry 29, 8030–8032 (1990)

    Article  Google Scholar 

  15. S.W. Snyder, R.R. Rustandi, J. Biggins, J.R. Norris, M.C. Thurnauer, Proc. Natl. Acad. Sci. USA 88, 9895–9896 (1991)

    Article  ADS  Google Scholar 

  16. J. Biggins, P. Mathis, Biochemistry 27, 1494–1500 (1988)

    Article  Google Scholar 

  17. S. Itoh, M. Iwaki, Biochemistry 30, 5340–5346 (1991)

    Article  Google Scholar 

  18. M. Iwaki, S. Itoh, in Electron Transfer in Inorganic, Organic and Biological Systems: eds. by JR. Bolton, N. Mataga, GL. McLendon (ACS, Washington, USA, 1991), pp 163–178

  19. T.W. Johnson, B. Zybailov, A.D. Jones, R. Bittl, S. Zech, D. Stehlik, J.H. Golbeck, P.R. Chitnis, J. Biol. Chem. 276, 39512–39521 (2001)

    Article  Google Scholar 

  20. Y.N. Pushkar, J.H. Golbeck, D. Stehlik, H. Zimmermann, J. Phys. Chem. B 108, 9439–9448 (2004)

    Article  Google Scholar 

  21. J. Niklas, B. Epel, M.L. Antonkine, S. Sinnecker, M.E. Pandelia, W. Lubitz, J. Phys. Chem. B 113, 10367–10379 (2009)

    Google Scholar 

  22. D. Stehlik, in Photosystem I. The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase, ed. by J. Golbeck (Springer, Dordrecht, 2006), pp. 361–386

  23. A. van der Est, Transient EPR: using spin polarization in sequential radical pairs to study electron transfer in photosynthesis. Photosynth Res (2009)

  24. O.G. Poluektov, S.V. Paschenko, L.M. Utschig, K.V. Lakshmi, M.C. Thurnauer, J. Am. Chem. Soc. 127, 11910–11911 (2005)

    Article  Google Scholar 

  25. A. van der Est, I. Sieckmann, W. Lubitz, D. Stehlik, Chem. Phys. 194, 349–359 (1995)

    Article  ADS  Google Scholar 

  26. Y. Sakuragi, B. Zybailov, G.Z. Shen, A.D. Jones, P.R. Chitnis, A. van der Est, R. Bittl, S. Zech, D. Stehlik, J.H. Golbeck, D.A. Bryant, Biochemistry 41, 394–405 (2002)

    Article  Google Scholar 

  27. Y.N. Pushkar, D. Stehlik, M. van Gastel, W. Lubitz, J. Mol. Struct. 700, 233–241 (2004)

    Article  ADS  Google Scholar 

  28. Y.N. Pushkar, O. Ayzatulin, D. Stehlik, Appl. Magn. Reson. 28, 195–211 (2005)

    Article  Google Scholar 

  29. Y.N. Pushkar, I. Karyagina, D. Stehlik, S. Brown, A. van der Est, J. Biol. Chem. 280, 12382–12390 (2005)

    Article  Google Scholar 

  30. C.E. Fursman, C. Teutloff, R. Bittl, J. Phys. Chem. B 106, 9679–9686 (2002)

    Article  Google Scholar 

  31. R. Bittl, S. Zech, C. Teutloff, W. Krabben, W. Lubitz, in Photosynthesis: Mechanisms and Effects, ed. by G. Garab (Kluwer, Dordrecht, 1998), pp. 509–514

  32. C. Teutloff, R. Bittl, W. Lubitz, Appl. Magn. Reson. 26, 5–21 (2004)

    Article  Google Scholar 

  33. B. Epel, J. Niklas, M.L. Antonkine, W. Lubitz, Appl. Magn. Reson. 30, 311–327 (2006)

    Article  Google Scholar 

  34. S.E.J. Rigby, M.C.W. Evans, P. Heathcote, Biochemistry 35, 6651–6656 (1996)

    Article  Google Scholar 

  35. C. Teutloff, F. MacMillan, R. Bittl, F. Lendzian, W. Lubitz, in Photosynthesis: Mechanisms and Effects, ed. by G. Garab (Kluwer, Dordrecht, 1998), pp. 607–610

  36. W. Lubitz, G. Feher, Appl. Magn. Reson. 17, 1–48 (1999)

    Article  Google Scholar 

  37. Y.N. Pushkar, S.G. Zech, D. Stehlik, S. Brown, A. van der Est, H. Zimmermann, J. Phys. Chem. B 106, 12052–12058 (2002)

    Article  Google Scholar 

  38. S.G. Zech, A.J. van der Est, R. Bittl, Biochemistry 36, 9774–9779 (1997)

    Article  Google Scholar 

  39. B. Epel, J. Niklas, S. Sinnecker, H. Zimmermann, W. Lubitz, J. Phys. Chem. B 110, 11549–11560 (2006)

    Article  Google Scholar 

  40. J.M. Frisch, W.G. Trucks, B.H. Schlegel, E.G. Scuseria, A.M. Robb, R.J. Cheeseman, A.J.J. Montgomery, T. Vreven, N.K. Kudin, C.J. Burant, M.J. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, A.G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, E.J. Knox, P.H. Hratchian, B.J. Cross, C. Adamo, J. Jaramillo, R. Gomperts, E.R. Stratmann, O. Yazyev, J.A. Austin, R. Cammi, C. Pomelli, W.J. Ochterski, Y.P. Ayala, K. Morokuma, A.G. Voth, J.J. Dannenberg, G.V. Zakrzewski, S. Dapprich, D.A. Daniels, C.M. Strain, O. Farkas, K.D. Malick, D.A. Rabuck, K. Raghavachari, B.J. Foresman, V.J. Ortiz, Q. Cui, G.A. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, L.R. Martin, J.D. Fox, T. Keith, A.M. Al-Laham, Y.C. Peng, A. Nanayakkara, M. Challacombe, P.W.M. Gill, B. Johnson, W. Chen, W.M. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02 (Gaussian Inc., Wallingford, 2004)

  41. S.M. Mattar, A.H. Emwas, A.D. Stephens, Chem. Phys. Lett. 363, 152–160 (2002)

    Article  ADS  Google Scholar 

  42. A.D. Becke, J. Chem. Phys. 98, 1372–1377 (1993)

    Article  ADS  Google Scholar 

  43. C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)

    Article  ADS  Google Scholar 

  44. M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. Defrees, J.A. Pople, J. Chem. Phys. 77, 3654–3665 (1982)

    Article  ADS  Google Scholar 

  45. P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213–222 (1973)

    Article  Google Scholar 

  46. P.C. Hariharan, J.A. Pople, Mol. Phys. 27, 209–214 (1974)

    Article  ADS  Google Scholar 

  47. W.J. Hehre, R. Ditchfie, J.A. Pople, J. Chem. Phys. 56, 2257–2261 (1972)

    Article  ADS  Google Scholar 

  48. V.A. Rassolov, J.A. Pople, M.A. Ratner, T.L. Windus, J. Chem. Phys. 109, 1223–1229 (1998)

    Article  ADS  Google Scholar 

  49. A. van der Est, Biochim. Biophys. Acta 1507, 212–225 (2001)

    Article  Google Scholar 

  50. Y.E. Kandrashkin, W. Vollmann, D. Stehlik, K. Salikhov, A. Van der Est, Mol. Phys. 100, 1431–1443 (2002)

    Article  ADS  Google Scholar 

  51. S.G. Zech, W. Hofbauer, A. Kamlowski, P. Fromme, D. Stehlik, W. Lubitz, R. Bittl, J. Phys. Chem. B 104, 9728–9739 (2000)

    Article  Google Scholar 

  52. W. Xu, P. Chitnis, A. Valieva, A. van der Est, Y.N. Pushkar, M. Krzystyniak, C. Teutloff, S.G. Zech, R. Bittl, D. Stehlik, B. Zybailov, G.Z. Shen, J.H. Golbeck, J. Biol. Chem. 278, 27864–27875 (2003)

    Article  Google Scholar 

  53. P. Jordan, P. Fromme, H.T. Witt, O. Klukas, W. Saenger, N. Krauss, Nature 411, 909–917 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This article is dedicated to the memory of Dietmar Stehlik, mentor, scientist and friend. This work was supported by grants from the Natural Science and Engineering Research Council Canada to A.v.d.E. and T.D. and from the US National Science Foundation to J.H.G. (MCB-0519743), as well as by the Deutsche Forschungsgemeinschaft (Sfb 663, TP A7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Art van der Est.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Est, A., Pushkar, Y., Karyagina, I. et al. Incorporation of 2,3-Disubstituted-1,4-Naphthoquinones into the A1 Binding Site of Photosystem I Studied by EPR and ENDOR Spectroscopy. Appl Magn Reson 37, 65–83 (2010). https://doi.org/10.1007/s00723-009-0047-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0047-x

Keywords

Navigation