Skip to main content
Log in

Mechanism of interdigestive migrating motor complex in conscious dogs

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The migrating motor complex (MMC) is well characterized by the appearance of gastrointestinal contractions in the interdigestive state. This study was designed to clarify the mechanisms of gastric MMC (G-MMC) and intestinal MMC (I-MMC) in conscious dogs.

Methods

Five strain gauge transducers were implanted on the stomach and intestine. To investigate the correlation between luminal 5-HT and phase III contractions, gastric and duodenal juices were collected during the MMC cycle. The 5-HT concentrations in gastric and duodenal juice were measured by HPLC. To investigate whether luminal 5-HT initiates MMC, 5-HT (10−8–10−6 M, 10 ml) was administered into the duodenum 20 min after gastric phase III. To investigate the involvement of 5-HT3 or 5-HT4 receptors in mediating G-MMC and I-MMC, 5-HT3 antagonists (ondansetron) or 5-HT4 antagonists (GR 125,487) were infused for 120 min.

Results

Luminal administration of 5-HT (10−6 M) initiated duodenal phase II followed by G-MMC and I-MMC with a concomitant increased release of plasma motilin. The duodenal 5-HT concentration was significantly increased during phase II (59 ± 9 ng/ml) and phase III (251 ± 21 ng/ml) compared to that of phase I (29 ± 5 ng/ml). On the other hand, the 5-HT content in the stomach was not significantly changed throughout the MMC cycle. Intravenous infusion of motilin (0.3 μg/kg/h) increased the luminal 5-HT content and induced G-MMC and I-MMC. 5-HT4 antagonists significantly inhibited both G-MMC and I-MMC, while 5-HT3 antagonists inhibited only G-MMC.

Conclusion

It is suggested that the MMC cycle is mediated by a positive feedback mechanism via the interaction between motilin and 5-HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EC cell:

Enterochromaffin cell

HPLC:

High-performance liquid chromatography

IPAN:

Intrinsic primary afferent neurons

MMC:

Migrating motor complex

MI:

Motility index

RIA:

Radioimmunoassay

References

  1. Vantrappen G, Janssens J, Hellemans J, Ghoos Y. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest. 1977;59:1158–66.

    Article  CAS  PubMed  Google Scholar 

  2. Itoh Z, Takeuchi S, Aizawa I, Mori K, Taminato T, Seino Y, et al. Changes in plasma motilin concentration and gastrointestinal contractile activity in conscious dogs. Am J Dig Dis. 1978;23:929–35.

    Article  CAS  PubMed  Google Scholar 

  3. Vantrappen G, Janssens J, Peeters TL, Bloom SR, Christofides ND, Hellemans J. Motilin and the interdigestive migrating motor complex in man. Dig Dis Sci. 1979;24:497–500.

    Article  CAS  PubMed  Google Scholar 

  4. Mochiki E, Satoh M, Tamura T, Haga N, Suzuki H, Mizumoto A, et al. Exogenous motilin stimulates endogenous release of motilin through cholinergic muscarinic pathways in the dog. Gastroenterology. 1996;111:1456–64.

    Article  CAS  PubMed  Google Scholar 

  5. Sarna S, Chey WY, Condon RE, Dodds WJ, Myers T, Chang TM. Cause-and-effect relationship between motilin and migrating myoelectric complexes. Am J Physiol. 1983;245:G277–84.

    CAS  PubMed  Google Scholar 

  6. Poitras P, Steinbach JH, VanDeventer G, Code CF, Walsh JH. Motilin-independent ectopic fronts of the interdigestive myoelectric complex in dogs. Am J Physiol. 1980;239:G215–20.

    CAS  PubMed  Google Scholar 

  7. Lee KY, Chang TM, Chey WY. Effect of rabbit antimotilin serum on myoelectric activity and plasma motilin concentration in fasting dog. Am J Physiol. 1983;245:G547–53.

    CAS  PubMed  Google Scholar 

  8. Suzuki H, Mochiki E, Haga N, Shimura T, Itoh Z, Kuwano H. Effect of duodenectomy on gastric motility and gastric hormones in dogs. Ann Surg. 2001;233:353–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hall KE, Greenberg GR, El-Sharkawy TY, Diamant NE. Vagal control of migrating motor complex-related peaks in canine plasma motilin, pancreatic polypeptide, and gastrin. Can J Physiol Pharmacol. 1983;61:1289–98.

    CAS  PubMed  Google Scholar 

  10. Chung SA, Valdez DT, Diamant NE. Adrenergic blockage does not restore the canine gastric migrating motor complex during vagal blockade. Gastroenterology. 1992;103:1491–7.

    CAS  PubMed  Google Scholar 

  11. Tanaka T, Kendrick ML, Zyromski NJ, Meile T, Sarr MG. Vagal innervation modulates motor pattern but not initiation of canine gastric migrating motor complex. Am J Physiol Gastrointest Liver Physiol. 2001;281:G283–92.

    CAS  PubMed  Google Scholar 

  12. Ormsbee HS 3rd, Silber DA, Hardy FE Jr. Serotonin regulation of the canine migrating motor complex. J Pharmacol Exp Ther. 1984;231:436–40.

    CAS  PubMed  Google Scholar 

  13. Gorard DA, Libby GW, Farthing MJ. 5-Hydroxytryptamine and human small intestinal motility: effect of inhibiting 5-hydroxytryptamine reuptake. Gut. 1994;35:496–500.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida N, Mizumoto A, Iwanaga Y, Itoh Z. Effects of 5-hydroxytryptamine 3 receptor antagonists on gastrointestinal motor activity in conscious dogs. J Pharmacol Exp Ther. 1991;256:272–8.

    CAS  PubMed  Google Scholar 

  15. Wilmer A, Tack J, Coremans G, Janssens J, Peeters T, Vantrappen G. 5-Hydroxytryptamine-3 receptors are involved in the initiation of gastric phase-3 motor activity in humans. Gastroenterology. 1993;105:773–80.

    CAS  PubMed  Google Scholar 

  16. Ueno T, Uemura K, Harris MB, Pappas TN, Takahashi T. Role of vagus nerve in postprandial antropyloric coordination in conscious dogs. Am J Physiol Gastrointest Liver Physiol. 2005;288:G487–95.

    Article  CAS  PubMed  Google Scholar 

  17. Foxx-Orenstein AE, Kuemmerle JF, Grider JR. Distinct 5-HT receptors mediate the peristaltic reflex induced by mucosal stimuli in human and guinea pig intestine. Gastroenterology. 1996;111:1281–90.

    Article  CAS  PubMed  Google Scholar 

  18. Gershon MD. Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 2005;39:S184–93.

    Article  PubMed  Google Scholar 

  19. Ahlman H, DeMagistris L, Zinner M, Jaffe BM. Release of immunoreactive serotonin into the lumen of the feline gut in response to vagal nerve stimulation. Science. 1981;213:1254–5.

    Article  CAS  PubMed  Google Scholar 

  20. Gronstad K, Dahlstrom A, Florence L, Zinner MJ, Ahlman J, Jaffe BM. Regulatory mechanisms in endoluminal release of serotonin and substance P from feline jejunum. Dig Dis Sci. 1987;32:393–400.

    Article  CAS  PubMed  Google Scholar 

  21. Kellum J, McCabe M, Schneier J, Donowitz M. Neural control of acid-induced serotonin release from rabbit duodenum. Am J Physiol. 1983;245:G824–31.

    CAS  PubMed  Google Scholar 

  22. Ferrara A, Zinner MJ, Jaffe BM. Intraluminal release of serotonin, substance P, and gastrin in the canine small intestine. Dig Dis Sci. 1987;32:289–94.

    Article  CAS  PubMed  Google Scholar 

  23. Fujimiya M, Okumiya K, Kuwahara A. Immunoelectron microscopic study of the luminal release of serotonin from rat enterochromaffin cells induced by high intraluminal pressure. Histochem Cell Biol. 1997;108:105–13.

    Article  CAS  PubMed  Google Scholar 

  24. Cooke HJ, Montakhab M, Wade PR, Wood JD. Transmural fluxes of 5-hydroxytryptamine in guinea pig ileum. Am J Physiol. 1983;244:G421–5.

    CAS  PubMed  Google Scholar 

  25. Martel F, Monteiro R, Lemos C, Vieira-Coelho MA. In vitro and in vivo effect of fluoxetine on the permeability of 3H-serotonin across rat intestine. Can J Physiol Pharmacol. 2004;82:940–50.

    Article  CAS  PubMed  Google Scholar 

  26. Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1269–76.

    CAS  PubMed  Google Scholar 

  27. Tanaka T, Mizumoto A, Mochiki E, Haga N, Suzuki H, Itoh Z. Relationship between intraduodenal 5-hydroxytryptamine release and interdigestive contractions in dogs. J Smooth Muscle Res. 2004;40:75–84.

    Article  PubMed  Google Scholar 

  28. Kellum JM, Maxwell RJ, Potter J, Kummerle JF. Motilin’s induction of phasic contractility in canine jejunum is mediated by the luminal release of serotonin. Surgery. 1986;100:445–53.

    CAS  PubMed  Google Scholar 

  29. Tougas G, Allescher HD, Dent J, Daniel EE. Sensory nerves of the intestines: role in control of pyloric region of dogs. Adv Exp Med Biol. 1991;298:199–211.

    CAS  PubMed  Google Scholar 

  30. Itoh Z. Motilin and clinical application. Peptides. 1997;18:593–608.

    Article  CAS  PubMed  Google Scholar 

  31. Glatzle J, Sternini C, Robin C, Zittel TT, Wong H, Reeve JR Jr, et al. Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology. 2002;123:217–26.

    Article  CAS  PubMed  Google Scholar 

  32. Grider JR, Kuemmerle JF, Jin JG. 5-HT released by mucosal stimuli initiates peristalsis by activating 5-HT4/5-HT1p receptors on sensory CGRP neurons. Am J Physiol. 1996;270:G778–82.

    CAS  PubMed  Google Scholar 

  33. Grider JR, Foxx-Orenstein AE, Jin JG. 5-Hydroxytryptamine4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine. Gastroenterology. 1998;115:370–80.

    Google Scholar 

  34. DiMagno EP, Hendricks JC, Go VL, Dozois RR. Relationships among canine fasting pancreatic and biliary secretions, pancreatic duct pressure, and duodenal phase III motor activity—Boldyreff revisited. Dig Dis Sci. 1979;24:689–93.

    Article  CAS  PubMed  Google Scholar 

  35. Quigley EM, Donovan JP, Lane MJ, Gallagher TF. Antroduodenal manometry. Usefulness and limitations as an outpatient study. Dig Dis Sci. 1992;37:20–8.

    Article  CAS  PubMed  Google Scholar 

  36. Kusano M, Sekiguchi T, Kawamura O, Kikuchi K, Miyazaki M, Tsunoda T, et al. Further classification of dysmotility-like dyspepsia by interdigestive gastroduodenal manometry and plasma motilin level. Am J Gastroenterol. 1997;92:481–4.

    CAS  PubMed  Google Scholar 

  37. Holtmann G, Goebell H, Jockenhoevel F, Talley NJ. Altered vagal and intestinal mechanosensory function in chronic unexplained dyspepsia. Gut. 1998;42:501–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Dr. Zen Itoh (Prof. Emeritus, Gunma University, Japan) for his valuable advice during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toku Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, H., Mochiki, E., Zietlow, A. et al. Mechanism of interdigestive migrating motor complex in conscious dogs. J Gastroenterol 45, 506–514 (2010). https://doi.org/10.1007/s00535-009-0190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0190-z

Keywords

Navigation