Skip to main content

Advertisement

Log in

Gut Movements: A Review of the Physiology of Gastrointestinal Transit

  • Mentored Reviews
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The well-regulated mechanisms of intestinal transit favor aboral movement of intestinal contents during the formation of normal stool. Electrical pacemakers initiate mechanical smooth muscular propulsion under regulation by the enteric nervous system—a function of the “brain-gut axis.” Several unique intestinal motor patterns function in concert to enhance the activities of intestinal transit. Development of pharmacologic targets of intestinal transit mechanisms afford clinicians control in the management of functional gastrointestinal disorders. This review highlights the important physiologic events of intestinal transit, discusses selected pharmacologic and neuromodulators involved in these processes, and provides relevant clinical correlates to physiologic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johnson LR. Physiology of the gastrointestinal tract. 5th ed. London: Elsevier; 2012.

    Google Scholar 

  2. Costanzo LS. Physiology. 3rd ed. Philadelphia, PA: Saunders Elsevier; 2006.

    Google Scholar 

  3. Miftahof R, Akhmadeev N. Dynamics of intestinal propulsion. J Theor Biol. 2007;246:377–393.

    Article  CAS  PubMed  Google Scholar 

  4. Feldman M, Friedman LS, Brandt LJ. Sleisenger and Fordtran’s gastrointestinal and liver disease: pathophysiology/diagnosis/management. 10th ed.

  5. Albibi R, McCallum RW. Metoclopramide: pharmacology and clinical application. Ann Intern Med. 1983;98:86–95.

    Article  CAS  PubMed  Google Scholar 

  6. Armitage AK, Dean AC. Function of the pylorus and pyloric antrum in gastric emptying. Gut. 1963;4:174–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maljaars PW, Peters HP, Mela DJ, et al. Ileal brake: a sensible food target for appetite control. A review. Physiol Behav. 2008;95:271–281.

    Article  CAS  PubMed  Google Scholar 

  8. van Avesaat M, Troost FJ, Ripken D, et al. Ileal brake activation: macronutrient-specific effects on eating behavior? Int J Obes. 2015;39:235–243.

    Article  CAS  Google Scholar 

  9. Sanders KM, Kito Y, Hwang SJ, et al. Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology. 2016;31:316–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Furness JB, Callaghan BP, Rivera LR, et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 2014;817:39–71.

    Article  PubMed  Google Scholar 

  11. Depoortere I. Taste receptors of the gut: emerging roles in health and disease. Gut. 2014;63:179–190.

    Article  CAS  PubMed  Google Scholar 

  12. Jameson KG, Hsiao EY. Linking the gut microbiota to a brain neurotransmitter. Trends Neurosci. 2018;41:413–414.

    Article  CAS  PubMed  Google Scholar 

  13. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133.

    Article  CAS  PubMed  Google Scholar 

  14. Farmer AD, Aziz Q. Mechanisms of visceral pain in health and functional gastrointestinal disorders. Scand J Pain. 2017;5:51–60.

    Article  Google Scholar 

  15. Agustí A, García-Pardo MP, López-Almela I, et al. Interplay between the gut-brain axis, obesity and cognitive function. Front Neurosci. 2018;12:155.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ward SM, Sanders KM. Interstitial cells of Cajal: primary targets of enteric motor innervation. Anat Rec. 2001;262:125–135.

    Article  CAS  PubMed  Google Scholar 

  17. Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307–343.

    Article  CAS  PubMed  Google Scholar 

  18. Christensen J, Schedl HP, Clifton JA. The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with variety of diseases. Gastroenterology. 1966;50:309–315.

    CAS  PubMed  Google Scholar 

  19. Vanderwinden JM, Rumessen JJ. Interstitial cells of Cajal in human gut and gastrointestinal disease. Microsc Res Tech. 1999;47:344–360.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou J, O’Connor MD, Ho V. The potential for gut organoid derived interstitial cells of Cajal in replacement therapy. Int J Mol Sci. 2017;18:2059.

    Article  PubMed Central  Google Scholar 

  21. Bayliss WM, Starling EH. The movements and innervation of the small intestine. J Physiol. 1899;24:99–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Greenwood-Van Meerveld B. Gastrointestinal pharmacology. New York, NY: Springer; 2017.

    Book  Google Scholar 

  23. Sarna SK. Cyclic motor activity; migrating motor complex: 1985. Gastroenterology. 1985;89:894–913.

    Article  CAS  PubMed  Google Scholar 

  24. Boivin M, Bradette M, Raymond MC, et al. Mechanisms for postprandial release of motilin in humans. Dig Dis Sci. 1992;37:1562–1568.

    Article  CAS  PubMed  Google Scholar 

  25. Kondo Y, Torii K, Itoh Z, et al. Erythromycin and its derivatives with motilin-like biological activities inhibit the specific binding of 125I-motilin to duodenal muscle. Biochem Biophys Res Commun. 1988;150:877–882.

    Article  CAS  PubMed  Google Scholar 

  26. Peeters T, Matthijs G, Depoortere I, et al. Erythromycin is a motilin receptor agonist. Am J Physiol. 1989;257:G470–G474.

    Article  CAS  PubMed  Google Scholar 

  27. Deloose E, Janssen P, Depoortere I, et al. The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol. 2012;9:271–285.

    Article  CAS  PubMed  Google Scholar 

  28. Vantrappen G, Janssens J, Hellemans J, et al. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest. 1977;59:1158–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bassotti G, Germani U, Morelli A. Human colonic motility: physiological aspects. Int J Colorectal Dis. 1995;10:173–180.

    Article  CAS  PubMed  Google Scholar 

  30. Hiroz P, Schlageter V, Givel JC, et al. Colonic movements in healthy subjects as monitored by a Magnet Tracking System. Neurogastroenterol Motil. 2009;21:838-e57.

    Article  PubMed  Google Scholar 

  31. Dinning PG, Wiklendt L, Gibbins I, et al. Low-resolution colonic manometry leads to a gross misinterpretation of the frequency and polarity of propagating sequences: initial results from fiber-optic high-resolution manometry studies. Neurogastroenterol Motil. 2013;25:e640–e649.

    CAS  PubMed  Google Scholar 

  32. Garcia D, Hita G, Mompean B, et al. Colonic motility: electric and manometric description of mass movement. Dis Colon Rectum. 1991;34:577–584.

    Article  CAS  PubMed  Google Scholar 

  33. Hagger R, Kumar D, Benson M, et al. Periodic colonic motor activity identified by 24-h pancolonic ambulatory manometry in humans. Neurogastroenterol Motil. 2002;14:271–278.

    Article  CAS  PubMed  Google Scholar 

  34. Narducci F, Bassotti G, Gaburri M, et al. Twenty four hour manometric recording of colonic motor activity in healthy man. Gut. 1987;28:17–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bassotti G, Betti C, Fusaro C, Morelli A. Colonic high-amplitude propagated contractions (mass movements): repeated 24-h manometric studies in healthy volunteers. Neurogastroenterol Motil. 1992;4:187–191.

    Article  Google Scholar 

  36. Bassotti G, Chiarioni G, Germani U, et al. Endoluminal instillation of bisacodyl in patients with severe (slow transit type) constipation is useful to test residual colonic propulsive activity. Digestion. 1999;60:69–73.

    Article  CAS  PubMed  Google Scholar 

  37. Hervé S, Savoye G, Behbahani A, et al. Results of 24-h manometric recording of colonic motor activity with endoluminal instillation of bisacodyl in patients with severe chronic slow transit constipation. Neurogastroenterol Motil. 2004;16:397–402.

    Article  PubMed  Google Scholar 

  38. Chey WY, Jin HO, Lee MH, et al. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am J Gastroenterol. 2001;96:1499–1506.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar D, Thompson PD, Wingate DL. Absence of synchrony between human small intestinal migrating motor complex and rectal motor complex. Am J Physiol. 1990;258:G171–G172.

    Article  CAS  PubMed  Google Scholar 

  40. Herve S, Savoye G, Behbahani A, et al. Results of 24-h manometric recording of colonic motor activity with endoluminal instillation of bisacodyl in patients with severe chronic slow transit constipation. Neurogastroenterol Motil. 2004;16:397–402.

    Article  CAS  PubMed  Google Scholar 

  41. Rao SS, Welcher K. Periodic rectal motor activity: the intrinsic colonic gatekeeper? Am J Gastroenterol. 1996;91:890–897.

    CAS  PubMed  Google Scholar 

  42. Schiller C, Fröhlich CP, Giessmann T, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22:971–979.

    Article  CAS  PubMed  Google Scholar 

  43. Di Stefano M, Miceli E, Missanelli A, et al. Meal induced rectosigmoid tone modification: a low caloric meal accurately separates functional and organic gastrointestinal disease patients. Gut. 2006;55:1409–1414.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Milla PJ. Advances in understanding colonic function. J Pediatr Gastroenterol Nutr. 2009;48:S43–S45.

    Article  PubMed  Google Scholar 

  45. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414.

    Article  CAS  PubMed  Google Scholar 

  46. Chial HJ, Camilleri M, Burton D, et al. Selective effects of serotonergic psychoactive agents on gastrointestinal functions in health. Am J Physiol Gastrointest Liver Physiol. 2003;284:G130–G137.

    Article  CAS  PubMed  Google Scholar 

  47. Tack J, Broekaert D, Corsetti M, et al. Influence of acute serotonin reuptake inhibition on colonic sensorimotor function in man. Aliment Pharmacol Ther. 2006;23:265–274.

    Article  CAS  PubMed  Google Scholar 

  48. Quigley EM. Prucalopride: safety, efficacy and potential applications. Therap Adv Gastroenterol. 2012;5:23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Camilleri M. Pharmacology and clinical experience with alosetron. Expert Opin Investig Drugs. 2000;9:147–159.

    Article  CAS  PubMed  Google Scholar 

  50. Guidance for Industry Irritable Bowel Syndrome—Clinical Evaluation of Drugs for Treatment. 2012. https://www.fda.gov/downloads/Drugs/Guidances/UCM205269.pdf. Accessed July 4, 2018.

  51. Cuppoletti J, Malinowska DH, Tewari KP, et al. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am J Physiol Cell Physiol. 2004;287:C1173–C1183.

    Article  CAS  PubMed  Google Scholar 

  52. Sarosiek I, Bashashati M, Alvarez A, et al. Lubiprostone accelerates intestinal transit and alleviates small intestinal bacterial overgrowth in patients with chronic constipation. Am J Med Sci. 2016;352:231–238.

    Article  PubMed  Google Scholar 

  53. Busby RW, Kessler MM, Bartolini WP, et al. Pharmacologic properties, metabolism, and disposition of linaclotide, a novel therapeutic peptide approved for the treatment of irritable bowel syndrome with constipation and chronic idiopathic constipation. J Pharmacol Exp Ther. 2013;344:196–206.

    Article  CAS  PubMed  Google Scholar 

  54. Andresen V, Camilleri M, Busciglio IA, et al. Effect of 5 days linaclotide on transit and bowel function in females with constipation-predominant irritable bowel syndrome. Gastroenterology. 2007;133:761–768.

    Article  CAS  PubMed  Google Scholar 

  55. Swell L, Gustafsson J, Schwartz CC, et al. An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man. J Lipid Res. 1980;21:455–466.

    CAS  PubMed  Google Scholar 

  56. Barkun AN, Love J, Gould M, et al. Bile acid malabsorption in chronic diarrhea: pathophysiology and treatment. Can J Gastroenterol. 2013;27:653–659.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mekjian HS, Phillips SF, Hofmann AF. Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. J Clin Invest. 1971;50:1569–1577.

    Article  CAS  PubMed  Google Scholar 

  58. Camilleri M. Bile Acid diarrhea: prevalence, pathogenesis, and therapy. Gut Liver. 2015;9:332–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Odunsi-Shiyanbade ST, Camilleri M, McKinzie S, et al. Effects of chenodeoxycholate and a bile acid sequestrant, colesevelam, on intestinal transit and bowel function. Clin Gastroenterol Hepatol. 2010;8:159–165.

    Article  CAS  PubMed  Google Scholar 

  60. Manchikanti L, Singh A. Therapeutic opioids: a ten-year perspective on the complexities and complications of the escalating use, abuse, and nonmedical use of opioids. Pain Phys. 2008;11:S63–S88.

    Google Scholar 

  61. Camilleri M. Opioid-induced constipation: challenges and therapeutic opportunities. Am J Gastroenterol. 2011;106:835–842.

    Article  CAS  PubMed  Google Scholar 

  62. Stefano GB, Goumon Y, Casares F, et al. Endogenous morphine. Trends Neurosci. 2000;23:436–442.

    Article  CAS  PubMed  Google Scholar 

  63. Kurz A, Sessler DI. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs. 2003;63:649–671.

    Article  CAS  PubMed  Google Scholar 

  64. Lacy BE, Chey WD, Cash BD, et al. Eluxadoline efficacy in IBS-D patients who report prior loperamide use. Am J Gastroenterol. 2017;112:924–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wade PR, Palmer JM, McKenney S, et al. Modulation of gastrointestinal function by MuDelta, a mixed µ opioid receptor agonist/µ opioid receptor antagonist. Br J Pharmacol. 2012;167:1111–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Kumral.

Ethics declarations

Conflict of interest

The authors have no relevant financial disclosures to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumral, D., Zfass, A.M. Gut Movements: A Review of the Physiology of Gastrointestinal Transit. Dig Dis Sci 63, 2500–2506 (2018). https://doi.org/10.1007/s10620-018-5259-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5259-1

Keywords

Navigation