Skip to main content

Advertisement

Log in

Chenopod salt bladders deter insect herbivores

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Trichomes on leaves and stems of certain chenopods (Chenopodiaceae) are modified with a greatly enlarged apical cell (a salt bladder), containing a huge central vacuole. These structures may aid in the extreme salt tolerance of many species by concentrating salts in the vacuole. Bladders eventually burst, covering the leaf in residue of bladder membranes and solid precipitates. The presence of this system in non-halophytic species suggests additional functions. I tested the novel hypothesis that these bladders have a defensive function against insect herbivores using choice, no choice, and field tests. Generalist insect herbivores preferred to feed on leaves without salt bladders in choice tests. In no choice tests, herbivores consumed less leaf matter with bladders. In a field test, leaves from which I had removed bladders suffered greater herbivory than adjacent leaves with bladders. Solutions containing bladders added to otherwise preferred leaves deterred herbivores, suggesting a water-soluble chemical component to the defense. This bladder system has a defensive function in at least four genera of chenopods. Salt bladders may be a structural defense, like spines or domatia, but also have a chemical defense component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ, Griffiths H (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138:171–190. doi:10.1046/j.1469-8137.1998.00111.x

    Article  CAS  Google Scholar 

  • Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54. doi:10.1016/j.envexpbot.2012.07.004

    Article  CAS  Google Scholar 

  • Baldwin BG, Goldman DH, Keil DJ, Patterson R, Rosatti TJ, Wilken DH (2012) The Jepson manual: vascular plants of California, 2nd edn. University of California Press, Berkeley

    Google Scholar 

  • Bassett IJ, Crompton CW (1978) The biology of Canadian weeds. 32. Chenopodium album L. Can J Plant Sci 58:1061–1072

  • Black RF (1954) The leaf anatomy of Australian members of the genus Atriplex. I. Atriplex vesicaria Heward and A. nummularia Lindl. Aust J Bot 2:269–286

    Article  Google Scholar 

  • Black RF (1958) Effect of sodium chloride on leaf succulence and area of Atriplex hastata L. Aust J Bot 6:306–321

    Article  Google Scholar 

  • Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176. doi:10.1007/s11104-007-9240-6

    Article  CAS  Google Scholar 

  • Chu GL, Stutz HC, Sanderson SC (1991) Morphology and taxonomic position of Suckleya suckleyana (Chenopodiaceae). Am J Bot 78:63–68. doi:10.2307/2445228

    Article  Google Scholar 

  • Cooper SM, Ginnett TF (1998) Spines protect plants against browsing by small climbing mammals. Oecologia 113:219–221. doi:10.1007/s004420050371

    Article  Google Scholar 

  • Del Rı́o M, Font R, Almela C, Vélez D, Montoro R, De Haro-Bailón A (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcóllar mine. J Biotechnol 98:125–137. doi:10.1016/S0168-1656(02)00091-3

  • Del Río-Celestino M, Font R, Moreno-Rojas R, De Haro-Bailón A (2006) Uptake of lead and zinc by wild plants growing on contaminated soils. Ind Crops Prod 3:230–237. doi:10.1016/j.indcrop.2006.06.013

    Article  Google Scholar 

  • Ehleringer JR, Mooney HA (1978) Leaf hairs: effects on physiological activity and adaptive value to a desert shrub. Oecologia 37:183–200. doi:10.1007/BF00344990

    Article  Google Scholar 

  • Fuentes-Bazan S, Mansion G, Borsch T (2012a) Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Mol Phylogenet Evol 62:359–374. doi:10.1016/j.ympev.2011.10.006

    Article  PubMed  Google Scholar 

  • Fuentes-Bazan S, Uotila P, Borsch T (2012b) A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42:5–24. doi:10.3372/wi42.42101

    Article  Google Scholar 

  • Hemminga MA, Van Soelen J (1988) Estuarine gradients and the growth and development of Agapanthia villosoviridescens (Coleoptera), a stem-borer of the salt marsh halophyte Aster tripolium. Oecologia 77:307–312. doi:10.1007/BF00378035

    Article  Google Scholar 

  • Hemminga MA, Van Soelen J (1992) The performance of the leaf mining microlepidopteran Bucculatrix maritima (Stt.) on the salt marsh halophyte Aster tripolium (L.) exposed to different salinity conditions. Oecologia 89:422–427. doi:10.1007/BF00317421

    Google Scholar 

  • Jou Y, Wang YL, Yen HE (2007) Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Funct Plant Biol 34:353–359. doi:10.1071/FP06269

    Article  CAS  Google Scholar 

  • Karban R, Karban C, Huntzinger M, Pearse I, Crutsinger G (2010) Diet mixing enhances the performance of a generalist caterpillar, Platyprepia virginalis. Ecol Entomol 35:92–99. doi:10.1111/j.1365-2311.2009.01162.x

    Article  Google Scholar 

  • Karimi SH, Ungar IA (1989) Development of epidermal salt hairs in Atriplex triangularis Willd. in response to salinity, light intensity, and aeration. Bot Gaz 150:68–71. doi:10.1086/337749

    Article  Google Scholar 

  • Kenagy GJ (1972) Saltbush leaves: excision of hypersaline tissue by a kangaroo rat. Science 178:1094–1096. doi:10.1126/science.178 4065.1094

    Article  CAS  PubMed  Google Scholar 

  • Kenagy GJ (1973) Adaptations for leaf eating in the Great Basin kangaroo rat, Dipodomys microps. Oecologia 12:383–412. doi:10.1007/BF00345050

    Article  Google Scholar 

  • Krimmel WA, Pearse IS (2013) Sticky plant traps insects to enhance indirect defense. Ecol Lett 16:219–224. doi:10.1111/ele.12032

    Article  CAS  PubMed  Google Scholar 

  • Leuck DB, Wiseman BR, McMillian WW (1974) Nutritional plant sprays: effect on fall armyworm feeding preferences. J Econ Entomol 67:58–60

    CAS  Google Scholar 

  • Liphschitz N, Waisel Y (1982) Adaptation of plants to saline environments: salt excretion and glandular structure. In: Sen DN, Rajpurohit KN (eds) Contributions to the ecology of halophytes. Junk, The Hague, pp 197–214

    Chapter  Google Scholar 

  • MacFarlane GR, Burchett MD (2000) Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat Bot 68:45–59. doi:10.1016/S0304-3770(00)00105-4

    Article  CAS  Google Scholar 

  • Mares MA, Ojeda RA, Borghi CE, Giannoni SM, DmHaz GB, Braun JK (1997) How desert rodents overcome halophytic plant defenses. BioScience 47:699–704

    Google Scholar 

  • Martel J (1998) Plant-mediated effects of soil salinity on a gall-inducing caterpillar Epiblema scudderiana (Lepidoptera: Tortrieidae) and the influence of feeding guild. Eur J Entomol 95:545–557

    Google Scholar 

  • Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98:379–384. doi:10.1007/BF00324227

    Article  Google Scholar 

  • Molano-Flores B (2001) Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann Bot 88:387–391

    Article  CAS  Google Scholar 

  • Moogouei R, Borghei M, Arjmandi R (2011) Phytoremediation of stable Cs from solutions by Calendula alata, Amaranthus chlorostachys and Chenopodium album. Ecotoxicol Environ Saf 74:2036–2039. doi:10.1016/j.ecoenv.2011.07.019

    Article  CAS  PubMed  Google Scholar 

  • Mozafar A, Goodin JR (1970) Vesiculated hairs: a mechanism for salt tolerance in Atriplex halimus L. Plant Physiol 45:62–65. doi:10.1104/pp.45.1.62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niveyro SL, Mortensen AG, Fomsgaard IS, Salvo A (2012) Differences among five amaranth varieties (Amaranthus spp.) regarding secondary metabolites and foliar herbivory by chewing insects in the field. Arthropod–Plant Interact 7:235–245. doi:10.1007/s11829-012-9219-y

    Article  Google Scholar 

  • Opel MR (2005) Leaf anatomy of Conophytum NE Br. (Aizoaceae). Haseltonia 11:27–52

    Article  Google Scholar 

  • Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Carrasco KBR, Martinez EA, Alnayef M, Marotti I, Bosi S (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:818–831. doi:10.1071/FP11088

    Article  CAS  Google Scholar 

  • Osmond CB, Lüttge U, West KR, Pallaghy CK, Shacher-Hill B (1969) Ion absorption in Atriplex leaf tissue II. Secretion of ions to epidermal bladders. Aust J Biol Sci 22:797–814. doi:10.1071/BI9690797

    CAS  Google Scholar 

  • Rand TA (2002) Variation in insect herbivory across a salt marsh tidal gradient influences plant survival and distribution. Oecologia 132:549–558. doi:10.1007/s00442-002-0989-2

    Article  Google Scholar 

  • Schirmer U, Breckle SW (1982) The role of bladders for salt removal in some Chenopodiaceae (mainly Atriplex species). In: Sen DN, Rajpurohit KN (eds) Contributions to the ecology of halophytes. Junk, The Hague, pp 215–231

    Chapter  Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry. Freeman, San Francisco

    Google Scholar 

  • Vasconcelos HL (1991) Mutualism between Maieta guianensis Aubl., a myrmecophytic melastome, and one of its ant inhabitants: ant protection against insect herbivores. Oecologia 87:295–298. doi:10.1007/BF00325269

    Article  Google Scholar 

  • Waisel Y (1970) Biology of halophytes. Academic, New York

    Google Scholar 

  • Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224. doi:10.1016/j.chemosphere.2004.05.020

    Article  CAS  PubMed  Google Scholar 

  • Wang GH, Mopper S (2008) Separate and interacting effects of deer florivory and salinity stress on iris herbivores. Oikos 117:564–570

    Article  Google Scholar 

  • Ward D, Spiegel M, Saltz D (1997) Gazelle herbivory and interpopulation differences in calcium oxalate content of leaves of a desert lily. J Chem Ecol 23:333–346. doi:10.1023/B:JOEC.0000006363.34360.9d

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700. doi:10.1016/j.envint.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  • Yábar E, Gianoli E, Echegaray ER (2002) Insect pests and natural enemies in two varieties of quinua (Chenopodium quinoa) at Cusco, Peru. J Appl Entomol 126:275–280. doi:10.1046/j.1439-0418.2002.00664.x

    Article  Google Scholar 

Download references

Acknowledgments

R. Karban, L. Yang (and lab group), J. Rosenheim, J. Richards, J. Piova-Scott, D. Morse, J. Blyth, J. Clegg, K. Hughes, and K. Mac Millen provided insightful conversations and commentary on the project and manuscript. Z. Chapman fastidiously edited the manuscript. R. Brennan, G. Charles, D. Klittich, W. Krimmel, and C. Nerkhorn provided field assistance. K. Ullman supplied innumerable beetles. The USDA GRIN program and K. Mac Millen provided seeds and seedlings; D. Brenner and K. Wells of the USDA provided helpful propagation advice. J. Shepard provided herbarium assistance. C. Koehler and P. Aigner facilitated work at McLaughlin Reserve. C. Eisemann and S. Clark determined the Monoxia. E. LoPresti was supported by an ecology graduate group fellowship at UC Davis and received funding for this study from the Center for Population Biology and the Jastro-Shields fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. LoPresti.

Additional information

Communicated by Caroline Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LoPresti, E.F. Chenopod salt bladders deter insect herbivores. Oecologia 174, 921–930 (2014). https://doi.org/10.1007/s00442-013-2827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2827-0

Keywords

Navigation