Skip to main content

Advertisement

Log in

Habitat-mediated impact of alien mink predation on common frog densities in the outer archipelago of the Baltic Sea

  • Population ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Alien predators have been recognised as one possible cause for amphibian declines around the world, but little is known of habitat-mediated predation impacts especially on adult amphibians. We studied common frog Rana temporaria under American mink Mustela vison predation in the outer archipelago of the Baltic Sea, south-western Finland. Using egg batches as an index of breeding frog female numbers we compared frog numbers and densities between a large, long-term mink-removal area and a comparable control area. Frog numbers in the removal area were at least 2.7-fold higher than those in the control area. In the presence of mink, frog densities increased with the amount of vegetation cover on the islands, indicating that mink predation affected frog densities especially on less-vegetated islands. An opposite trend appeared to be true for frogs in the mink-removal area, where other predators like snakes could induce a decline of frog densities on more vegetated islands. Shrub or grass vegetation seems to provide frogs shelter against alien mink predation. Our result highlights the importance of landscape-level habitat management as a conservation tool for amphibian populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahola M, Nordström M, Banks PB, Laanetu N, Korpimäki E (2006) Alien mink predation induces prolonged declines in archipelago amphibians. Proc R Soc B 273:1261–1265. doi:10.1098/rspb.2005.3455

    Article  PubMed  Google Scholar 

  • Alford RA, Bradfield KS, Richards SJ (2007) Global warming and amphibian losses. Nature 447:E3–E4. doi:10.1038/nature05940

    Article  CAS  PubMed  Google Scholar 

  • Alho JS, Herczeg G, Merilä J (2008) Female-biased sex ratios in subarctic common frogs. J Zool 275:57–63. doi:10.1111/j.1469-7998.2007.00409.x

    Article  Google Scholar 

  • Andruskiw M, Fryxell JM, Thompson ID, Baker JA (2008) Habitat-mediated variation in predation risk by the American marten. Ecology 89:2273–2280. doi:10.1890/07-1428.1

    Article  PubMed  Google Scholar 

  • Banks PB, Norrdahl K, Nordström M, Korpimäki E (2004) Dynamic impacts of feral mink predation on vole metapopulations in the outer archipelago of the Baltic Sea. Oikos 105:79–88. doi:10.1111/j.0030-1299.2004.12855.x

    Article  Google Scholar 

  • Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:271–285. doi:10.1016/j.biocon.2005.04.009

    Article  Google Scholar 

  • Belden LK, Wildy EL, Hatch AC, Blaustein AR (2000) Juvenile western toads, Bufo boreas, avoid chemical cues of snakes fed juvenile, but not larval, conspecifics. Anim Behav 59:871–875. doi:10.1006/anbe.1999.1398

    Article  PubMed  Google Scholar 

  • Berven KA, Grudzien TA (1990) Dispersal in the wood frog (Rana sylvatica): implications for genetic population structure. Evolution 44:2047–2056

    Article  Google Scholar 

  • Blaustein AR, Belden LK (2003) Amphibian defenses against ultraviolet-B radiation. Evol Dev 5:89–97. doi:10.1046/j.1525-142X.2003.03014.x

    Article  CAS  PubMed  Google Scholar 

  • Bonesi L, Palazon S (2007) The American mink in Europe: status, impacts, and control. Biol Conserv 134:470–483. doi:10.1016/j.biocon.2006.09.006

    Article  Google Scholar 

  • Brzeziński M, Romanowski J, Kopczyński Ł, Kurowicka E (2006) Habitat and seasonal variations in diet of otters, Lutra lutra in eastern Poland. Folia Zool 55:337–348

    Google Scholar 

  • Bull JJ, Shine R (1979) Iteroparous animals that skip opportunities for reproduction. Am Nat 114:296–303

    Article  Google Scholar 

  • Caro T (2005) Antipredator defenses in birds and mammals. University of Chicago Press, Chicago

    Google Scholar 

  • Clavero M, Prenda J, Delibes M (2003) Trophic diversity of the otter (Lutra lutra L.) in the temperate and Mediterranean freshwater habitats. J Biogeogr 30:761–769. doi:10.1046/j.1365-2699.2003.00865.x

    Article  Google Scholar 

  • Creel S, Winnie J Jr, Maxwell B, Hamlin K, Creel M (2005) Elk alter habitat selection as an antipredator response to wolves. Ecology 86:3387–3397. doi:10.1890/05-0032

    Article  Google Scholar 

  • Dodd CK Jr (2009) Conservation and management. In: Dodd CK Jr (ed) Amphibian ecology and conservation: a handbook of techniques. Oxford University Press, Oxford, pp 507–527

    Google Scholar 

  • Dunstone N (1993) The mink. Poyser, London

    Google Scholar 

  • Elmberg J (1990) Long-term survival, length of breeding season, and operational sex ratio in a boreal population of common frogs, Rana temporaria. Can J Zool 68:121–127. doi:10.1139/z90-017

    Article  Google Scholar 

  • Elmberg J (1991) Ovarian cyclicity and fecundity in boreal common frog Rana temporaria along a climatic gradient. Funct Ecol 5:340–350

    Article  Google Scholar 

  • Fey K, Banks PB, Oksanen L, Korpimäki E (2009) Does removal of an alien predator from small islands in the Baltic Sea induce a trophic cascade? Ecography 32:546–552. doi:10.1111/j.1600-0587.2008.05637.x

    Article  Google Scholar 

  • Flowers MA, Graves BM (1997) Juvenile toads avoid chemical cues from snake predators. Anim Behav 53:641–646. doi:10.1006/anbe.1996.0338

    Article  Google Scholar 

  • Gamble LR, McGarigal K, Compton BW (2007) Fidelity and dispersal in the pond-breeding amphibian, Ambystoma opacum: implications for spatio-temporal population dynamics and conservation. Biol Cons 139:247–257. doi:10.1016/j.biocon.2007.07.001

    Article  Google Scholar 

  • Getz LL, Oli MK, Hofmann JE, McGuire B (2005) Habitat-specific demography of sympatric vole populations over 25 years. J Mammal 86:561–568. doi:10.1644/1545-1542(2005)86[561:HDOSVP]2.0.CO;2

    Article  Google Scholar 

  • Gibbons MM, McCarthy TK (1984) Growth, maturation and survival of frogs Rana temporaria. Holarct Ecol 7:419–427. doi:10.1111/j.1600-0587.1984.tb01143.x

    Google Scholar 

  • Gonzalo A, Cabido C, Galán P, López P, Martín J (2006) Predator, but not conspecific, chemical cues influence pond selection by recently metamorphosed Iberian green frogs, Rana perezi. Can J Zool 84:1295–1299. doi:10.1139/Z06-118

    Article  Google Scholar 

  • Haapanen A (1970) Site tenacity of the common frog (Rana temporaria L.) and the moor frog (R. arvalis Nilss.). Ann Zool Fenn 7:61–66

    Google Scholar 

  • Haapanen A (1982) Breeding of the common frog (Rana temporaria L.). Ann Zool Fenn 19:75–79

    Google Scholar 

  • Hixon MA, Beets JP (1993) Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol Monogr 63:77–101. doi:10.2307/2937124

    Article  Google Scholar 

  • Houlahan JE, Findlay CS (2003) The effects of adjacent land use on wetland amphibian species richness and community composition. Can J Fish Aquat Sci 60:1078–1094. doi:10.1139/F03-095

    Article  Google Scholar 

  • Ireland PH (1989) Larval survivorship in two populations of Ambystoma maculatum. J Herpetol 23:209–215

    Article  Google Scholar 

  • Jędrzejewska B, Jędrzejewski W (1998) Predation in vertebrate communities: the Białowieża Primeval Forest as a case study. Springer, Berlin

    Google Scholar 

  • Jędrzejewska B, Sidorovich VE, Pikulik MM, Jędrzejewski W (2001) Feeding habits of the otter and the American mink in Białowieża Primeval Forest (Poland) compared to other Eurasian populations. Ecography 24:165–180. doi:10.1034/j.1600-0587.2001.240207.x

    Article  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394

    Google Scholar 

  • Kats LB, Ferrer RP (2003) Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Divers Distrib 9:99–110

    Article  Google Scholar 

  • Kavanagh RP (1988) The impact of predation by the powerful owl, Ninox strenua, on a population of the greater glider, Petauroides volans. Aust J Ecol 13:445–450. doi:10.1111/j.1442-9993.1988.tb00992.x

    Article  Google Scholar 

  • Kiseleva NV (2009) The peculiarities of feeding of the American mink (Neovison vison) in the southern Urals. Biol Bull 36:406–409. doi:10.1134/S106235900904013X

    Google Scholar 

  • Kopp K, Wachlevski M, Eterovick PC (2006) Environmental complexity reduces tadpole predation by water bugs. Can J Zool 84:136–140. doi:10.1139/Z05-186

    Article  Google Scholar 

  • Korpimäki E, Brown PR, Jacob J, Pech RP (2004) The puzzles of population cycles and outbreaks of small mammals solved? Bioscience 54:1071–1079. doi:10.1641/0006-3568(2004)054[1071:TPOPCA]2.0.CO;2

    Article  Google Scholar 

  • Kuzmin S, Ishchenko V, Tuniyev B, Beebee T, Andreone F, Nyström P, Anthony B, Schmidt B, Ogrodowczyk A, Ogielska M, Bosch J, Miaud C, Loman J, Cogalniceanu J, Kovács T, Kis I (2004) Rana temporaria. In: IUCN 2008. 2008 IUCN Red list of threatened species. http://www.iucnredlist.org. Accessed 19 January 2009

  • Lanszki J, Heltai M (2007) Diet of the European polecat and the steppe polecat in Hungary. Mammal Biol 72:49–53. doi:10.1016/j.mambio.2006.07.002

    Article  Google Scholar 

  • Laurila A (1998) Breeding habitat selection and larval performance of two anurans in freshwater rock-pools. Ecography 21:484–494. doi:10.1111/j.1600-0587.1998.tb00440.x

    Article  Google Scholar 

  • Laurila A, Aho T (1997) Do female common frogs choose their breeding habitat to avoid predation on tadpoles? Oikos 78:585–591

    Article  Google Scholar 

  • Laurila A, Kujasalo J, Ranta E (1997) Different antipredator behaviour in two anuran tadpoles: effects of predator diet. Behav Ecol Sociobiol 40:329–336

    Article  Google Scholar 

  • Lecomte N, Careau V, Gauthier G, Giroux J-F (2008) Predator behaviour and predation risk in the heterogeneous Arctic environment. J Anim Ecol 77:439–447. doi:10.1111/j.1365-2656.2008.01354.x

    Article  PubMed  Google Scholar 

  • Lodé T (1996) Polecat predation on frogs and toads at breeding sites in western France. Ethol Ecol Evol 8:115–124

    Google Scholar 

  • Lodé T (2000) Functional response and area-restricted search in a predator: seasonal exploitation of anurans by the European polecat, Mustela putorius. Aust Ecol 25:223–231. doi:10.1046/j.1442-9993.2000.01024.x

    Google Scholar 

  • Lodé T, Holveck J-M, Lesbarrères D, Pagano A (2004) Sex-biased predation by polecats influences the mating system of frogs. Proc R Soc Lond B (Suppl) 271:S399–S401. doi:10.1098/rsbl.2004.0195

    Article  Google Scholar 

  • Loman J (1984) Density and survival of Rana arvalis and R. temporaria. Alytes 3:125–134

    Google Scholar 

  • Loman J (1994) Site tenacity, within and between summers, of Rana arvalis and Rana temporaria. Alytes 12:15–29

    Google Scholar 

  • Loman J (2001) Intraspecific competition in tadpoles, does it matter in nature? A field experiment. Popul Ecol 43:253–263

    Article  Google Scholar 

  • Loman J (2004) Density regulation in tadpoles of Rana temporaria: a full pond field experiment. Ecology 85:1611–1618. doi:10.1890/03-0179

    Article  Google Scholar 

  • Loman J, Andersson G (2007) Monitoring brown frogs Rana arvalis and Rana temporaria in 120 south Swedish ponds 1989–2005: mixed trends in different habitats. Biol Conserv 135:46–56. doi:10.1016/j.biocon.2006.09.017

    Article  Google Scholar 

  • Maran T, Kruuk H, Macdonald DW, Polma M (1998) Diet of two species of mink in Estonia: displacement of Mustela lutreola by M. vison. J Zool Lond 245:218–222. doi:10.1111/j.1469-7998.1998.tb00093.x

    Article  Google Scholar 

  • Marnell F (1998) Discriminant analysis of the terrestrial and aquatic habitat determinants of the smooth newt (Triturus vulgaris) and the common frog (Rana temporaria) in Ireland. J Zool Lond 244:1–6. doi:10.1111/j.1469-7998.1998.tb00001.x

    Article  Google Scholar 

  • Meyer AH, Schmidt BR, Grossenbacher K (1998) Analysis of three amphibian populations with quarter-century long time-series. Proc R Soc Lond B 265:523–528. doi:10.1098/rspb.1998.0326

    Article  CAS  Google Scholar 

  • Miaud C, Guyétant R, Elmberg J (1999) Variations in life-history traits in the common frog Rana temporaria (Amphibia: Anura): a literature review and new data from French Alps. J Zool 249:61–73. doi:10.1111/j.1469-7998.1999.tb01060.x

    Article  Google Scholar 

  • Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–131

    Article  Google Scholar 

  • Murphy PJ (2003) Context-dependent reproductive site choice in a Neotropical frog. Behav Ecol 14:626–633

    Article  Google Scholar 

  • Niemimaa J, Pokki J (1990) Food habits of the mink in the outer archipelago of the Gulf of Finland. Suomen Riista 36:18–30 [In Finnish with English summary]

    Google Scholar 

  • Nordström M, Högmander J, Nummelin J, Laine J, Laanetu N, Korpimäki E (2002) Variable responses of waterfowl breeding populations to long-term removal of introduced American mink. Ecography 25:385–394. doi:10.1034/j.1600-0587.2002.250401.x

    Article  Google Scholar 

  • Nordström M, Högmander J, Laine J, Nummelin J, Laanetu N, Korpimäki E (2003) Effects of feral mink removal on seabirds, waders and passerines on small islands in the Baltic Sea. Biol Cons 109:359–368. doi:10.1016/S0006-3207(02)00162-3

    Article  Google Scholar 

  • Pearson PG (1955) Population ecology of the spadefoot toad, Scaphiopus h. holbrooki (Harlan). Ecol Monogr 25:234–267. doi:10.2307/1943283

    Article  Google Scholar 

  • Pechmann JHK, Scott DE, Semlitsch RD, Caldwell JP, Vitt LJ, Gibbons JW (1991) Declining amphibian populations: the problem of separating human impacts from natural fluctuations. Science 253:892–895. doi:10.1126/science.253.5022.892

    Article  PubMed  Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sanchez-Azofeifa GA, Still CJ, Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167. doi:10.1038/nature04246

    Article  CAS  PubMed  Google Scholar 

  • Relyea RA (2001) Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82:523–540. doi:10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2

    Article  Google Scholar 

  • Resetarits WJ Jr, Wilbur HM (1989) Choice of oviposition site by Hyla chrysoscelis: role of predators and competitors. Ecology 70:220–228. doi:10.2307/1938428

    Article  Google Scholar 

  • Rieger JF, Binckley CA, Resetarits WJ Jr (2004) Larval performance and oviposition site preference along a predation gradient. Ecology 85:2094–2099. doi:10.1890/04-0156

    Article  Google Scholar 

  • Rittenhouse TAG, Semlitsch RD (2007) Distribution of amphibians in terrestrial habitat surrounding wetlands. Wetlands 27:153–161. doi:10.1672/0277-5212(2007)27[153:DOAITH]2.0.CO;2

    Article  Google Scholar 

  • Ryser J (1988) Determination of growth and maturation in the common frog, Rana temporaria, by skeletochronology. J Zool 216:673–685. doi:10.1111/j.1469-7998.1988.tb02465.x

    Article  Google Scholar 

  • Salo P, Korpimäki E, Banks PB, Nordström M, Dickman CR (2007) Alien predators are more dangerous than native predators to prey populations. Proc R Soc B 274:1237–1243. doi:10.1098/rspb.2006.0444

    Article  PubMed  Google Scholar 

  • Salo P, Toivola M, Nordström M, Korpimäki E (2010) Effects of home range characteristics on the diet composition of female American mink in the Baltic Sea archipelago. Ann Zool Fenn (in press)

  • Savage RM (1961) The ecology and life history of the common frog (Rana temporaria temporaria). Pitman, London

    Google Scholar 

  • Schmidt KA (1999) Foraging theory as a conceptual framework for studying nest predation. Oikos 85:151–160

    Article  Google Scholar 

  • Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manage 72:260–267. doi:10.2193/2007-082

    Article  Google Scholar 

  • Semlitsch RD, Bodie JR (2003) Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Cons Biol 17:1219–1228. doi:10.1046/j.1523-1739.2003.02177.x

    Article  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128. doi:10.1111/j.0906-7590.2005.04042.x

    Article  Google Scholar 

  • Stjernberg T, Hagner-Wahlsten N (1994) The distribution of the otter in Finland in 1975 and 1985. Suomen Riista 40:42–49 [In Finnish with English summary]

    Google Scholar 

  • Street D (1979) The reptiles of northern and central Europe. Batsford, London

    Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischmann DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi:10.1126/science.1103538

    Article  CAS  PubMed  Google Scholar 

  • Turchin P (2003) Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, Princeton

    Google Scholar 

  • Warfe DM, Barmuta LA (2004) Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141:171–178. doi:10.1007/s00442-004-1644-x

    Article  PubMed  Google Scholar 

  • Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgments

We would like to thank Jouko Högmander and Metsähallitus Forest and Park Services for all their help, including financial support and performing long-term mink removal in the archipelago. Nikolai Laanetu, Jarmo Laine, Mikael Nordström and William Velmala helped in frog censuses in 1999. Kalle Ruokolainen and Samuli Helle assisted with the statistics. Robert L. Thomson, the students at the postgraduate seminar of the Section of Ecology, University of Turku, and three anonymous reviewers gave valuable comments on the draft manuscript. The study was financially supported by the Maj and Tor Nessling Foundation and the Alfred Kordelin Foundation (grants to P. Salo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pälvi Salo.

Additional information

Communicated by Janne Sundell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salo, P., Ahola, M.P. & Korpimäki, E. Habitat-mediated impact of alien mink predation on common frog densities in the outer archipelago of the Baltic Sea. Oecologia 163, 405–413 (2010). https://doi.org/10.1007/s00442-010-1573-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1573-9

Keywords

Navigation