Skip to main content

Advertisement

Log in

Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America

  • Ecosystem Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Plant species affect natural ecosystems through interactions between environmental and genetic factors. The importance of plant species in controlling decomposition is now well-established through its influence on litter quality, which affects mass loss and nutrient release. At the same time, direct species effects are often confounded with indirect site effects due to the ecophysiological responses of plants to environmental variability. We evaluated the intrinsic effects of species on litter quality and decomposition, comparing 14 native perennial grass species from three different grassland ecosystems in North and South America. Plants were grown under controlled greenhouse conditions to eliminate any indirect effects of climate on litter quality, and senescent material of leaf litter and roots were collected. The initial litter nutrient quality and the carbon quality were assessed, and decomposition was determined over a period of one year by placing litterbags in a common grassland site. In spite of constant growth conditions, species’ litter showed broad and significant differences in N, P and lignin concentration, as well as C:N ratio, with the greatest differences occurring between C3 and C4 species and leaf litter and root material. In addition, decomposition was significantly different among species and between leaf litter and roots within species, with constants (k) ranging from 1.50 to 3.65 year−1 for leaf litter, and 0.51–1.82 year−1 for roots. These results highlight the fact that, independent of climate or edaphic changes due to human activity, changes in plant species or in allocation patterns among plant organs in grassland ecosystems could have a large effect on carbon turnover. At the same time, the way in which intrinsic species characteristics affect decomposition demonstrates a large degree of functional convergence among species from grasslands of North and South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–b
Fig. 3a–b
Fig. 4a–b

Similar content being viewed by others

References

  • Aber JD, Melillo JM (1982) Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can J Bot 60:2263–2269

    CAS  Google Scholar 

  • Adler PB, Milchunas DG, Lauenroth WK, Sala OE, Burke IC (2004) Functional traits of graminoids in semi-arid steppes: a test of grazing histories. J Appl Ecol 41:653–663

    Article  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–97

    Article  CAS  Google Scholar 

  • Austin AT, Vitousek PM (1998) Nutrient dynamics on a rainfall gradient in Hawaii. Oecologia 113:519–529

    Article  Google Scholar 

  • Austin AT, Vitousek PM (2000) Precipitation, decomposition, and litter decomposability of Metrosideros polymorpha on Hawaii. J Ecol 88:129–138

    Article  Google Scholar 

  • Cabrera AL, Zardini EM (1978) Manual de la flora de los alrededores de Buenos Aires. Acme, Buenos Aires

  • Chapin FS, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–57

    Article  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114

    Article  Google Scholar 

  • Cornelissen JHC, Perez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200

    Google Scholar 

  • Correa MN (1971–1984) Flora patagónica. Colección INTA, Buenos Aires

  • Coûteaux M-M, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66

    Article  Google Scholar 

  • Dormaar JF, Willms WD (1993) Decomposition of blue grama and rough fescue roots in praire soils. J Range Manage 46:207–213

    Google Scholar 

  • Epstein H, Lauenroth W, Burke I, Coffin D (1996) Ecological responses of dominant grasses along two climatic gradients in the Great Plains of the United States. J Veg Sci 7:777–788

    Article  Google Scholar 

  • Epstein HE, Laurenroth WK, Burke IC, Coffin DP (1998) Regional productivities of plant species in the Great Plains of the United States. Plant Ecol 134:173–195

    Article  Google Scholar 

  • Florence E, Milner DF (1979) Routine determination of nitrogen by Kjeldahl digestion without use of catalyst. Analyst 104:378–381

    Article  PubMed  CAS  Google Scholar 

  • Fynn RWS, Morris CD, Kirkman KP (2005) Plant strategies and trait trade-offs influence trends in competitive ability along gradients of soil fertility and disturbance. J Ecol 93:384–394

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Change Biol 6:751–765

    Article  Google Scholar 

  • Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439

    Article  Google Scholar 

  • Harmon ME, Nadelhoffer KJ, Blair JM (1999) Analysis of detritus and organic horizons for mineral and organic constituents. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, Oxford, pp 143–165

    Google Scholar 

  • Hector A et al. (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hoorens B, Aerts R, Stroetenga M (2003) Does initial litter chemistry explain litter mixtures effects on decomposition? Oecologia 442:578–586

    Article  Google Scholar 

  • Madritch MD, Hunter MD (2002) Phenotypic diversity influences ecosystem functioning in an oak sandhills community. Ecology 83:2084–2090

    Article  Google Scholar 

  • Marschner H, Kirkby E, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    CAS  Google Scholar 

  • McGroddy ME, Daufrense T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401

    Google Scholar 

  • Melillo JM, Aber JD, Steudler PA, Schimel JP (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Milchunas DG, Lauenroth WK (1992) Carbon dynamics and estimates of primary production by harvest, 14C dilution, and 14C turnover. Ecology 73:593–607

    Article  Google Scholar 

  • Moretto AS, Distel RA (2003) Decompositon and nutrient dynamics in leaf litter and roots of Poa ligularis and Stipa gyneriodes. J Arid Environ 55:503–514

    Article  Google Scholar 

  • Moretto AS, Distel RA, Didoné NG (2001) Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Appl Soil Ecol 18:31–37

    Article  Google Scholar 

  • Murphy KL, Burke IC, Vinton MA, Lauenroth WK, Aguiar MR, Wedin DA, Virginia RA, Lowe P (2002) Regional analysis of litter quality in the central grassland region of North America. J Veg Sci 13:395–402

    Article  Google Scholar 

  • Ostertag R, Hobbie SE (1999) Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability. Oecologia 121:564–573

    Article  Google Scholar 

  • Paruelo J, Jobbágy E, Sala O, Lauenroth W, Burke I (1998) Functional and structural convergence of temperate grassland and shrubland ecosystems. Ecol Appl 8:194–206

    Google Scholar 

  • Pastor J, Stillwell MA, Tilman D (1987) Little bluestem litter dynamics in Minnesota old fields. Oecologia 72:327–330

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1170–1774

    Article  Google Scholar 

  • Sala OE, Austin AT, Vivanco L (2001) Temperate grassland and shrubland ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 5. Academic, San Diego, CA, pp 627–635

  • Sala OE, Deregibus VA, Schlichter T, Alippe H (1981) Productivity dynamics of a native temperate grassland in Argentina. J Range Manage 34:48–51

    Google Scholar 

  • Seastedt TR, Parton WJ, Ojima DS (1992) Mass loss and nitrogen dynamics of decaying litter of grasslands: the apparent low nitrogen immobilization potential of root detritus. Can J Bot 70:384–391

    Google Scholar 

  • Semmartin M, Aguiar MR, Distel RA, Moretto AS, Ghersa CM (2004) Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient. Oikos 107:148–160

    Article  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  PubMed  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley, CA

    Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367:363–367

    Article  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • USDA, NRCS (2005) The PLANTS Database, Version 3.5. Data compiled from various sources by Mark W. Skinner. National Plant Data Center, Baton Rouge, LA (see http://www.plants.usda.gov, last accessed 5th July 2006)

  • Van Soest PJ (1963) Use of detergents in analysis of fibrous feeds II: a rapid method for the determination of fiber and lignin. Assoc Off Anal Chem 46:829–835

    Google Scholar 

  • Vinton MA, Burke IC (1997) Contingent effects of plant species on soils along a regional moisture gradient in the Great Plains. Oecologia 110:393–402

    Article  Google Scholar 

  • Vitousek PM, Turner DR, Parton WJ, Sanford RL (1994) Litter decomposition on the Mauna Loa matrix: patterns, mechanisms, and models. Ecology 75:418–429

    Article  Google Scholar 

  • Walter H (1985) Vegetation of the earth and ecological systems of the geo-biosphere, 3rd edn. Springer, Berlin Heidelberg New York

  • Wardle DA, Lavelle P (1997) Linkages between soil biota, plant litter quality and decomposition. In: Cadish G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK, pp 107–124

    Google Scholar 

  • Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecolgia 84:433–441

    Google Scholar 

  • Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

  • Zimmer M (2002) Is decomposition of woodland leaf litter influenced by its species richness? Soil Biol Biochem 34:277–284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank F. del Pino who did the initial planting and maintenance of the grasses, and J. M. Paruelo for the permission to harvest senescent material. E. S. Galli, L. M. Rossi, M. Fractman and P. Flombaum helped with the installation of the experiment. M. Tagliazuchi, V. Pancotto and I. Montoya provided laboratory assistance. O. Sala and R. Golluscio provided helpful comments throughout the course of this study. L. Vivanco was supported by a fellowship from the University of Buenos Aires and YPF Foundation of Argentina. A. T. Austin is a career investigator from CONICET. Additional support came from National Science Foundation of the United States, Fundación Antorchas, Agencia Nacional de Promoción de Ciencia y Tecnología (ANPCyT) and the University of Buenos Aires of Argentina, as well as the Inter-American Institute for Global Change Research (CRN-012). The experiments presented in this paper comply with the current laws of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía Vivanco.

Additional information

Communicated by Jim Ehleringer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivanco, L., Austin, A.T. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 150, 97–107 (2006). https://doi.org/10.1007/s00442-006-0495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-006-0495-z

Keywords

Navigation