Skip to main content

Advertisement

Log in

EphB receptors and ephrinB ligands: regulators of vascular assembly and homeostasis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Eph receptors comprise the largest family of receptor tyrosine kinases consisting of eight EphA receptors (with five corresponding glycosyl-phosphatidyl-inositol-anchored ephrinA ligands) and six EphB receptors (with three corresponding transmembrane ephrinB ligands). Originally identified as neuronal pathfinding molecules, genetic loss of function experiments have identified EphB receptors and ephrinB ligands as crucial regulators of vascular assembly, orchestrating arteriovenous differentiation and boundary formation. Despite these clearly defined rate-limiting roles of the EphB/ephrinB system for developmental angiogenesis, the mechanisms of the functions of EphB receptors and ephrinB ligands in the cells of the vascular system are poorly understood. Moreover, little evidence can be found in the recent literature regarding complementary EphB and ephrinB expression patterns that occur in the vascular system and that may bring cells into juxtapositional contact to allow bi-directional signaling between neighboring cells. This review summarizes the current knowledge of the role of EphB receptors and ephrinB ligands during embryonic vascular assembly and discusses recent findings on EphB/ephrinB-mediated cellular functions pointing to the crucial role of the Eph/ephrin system in controlling vascular homeostasis in the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A, B.

Similar content being viewed by others

References

  • Adams RH (2002) Vascular patterning by Eph receptor tyrosine kinases and ephrins. Semin Cell Dev Biol 13:55–60

    Article  CAS  PubMed  Google Scholar 

  • Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    CAS  PubMed  Google Scholar 

  • Adams RH, Diella F, Hennig S, Helmbacher F, Deutsch U, Klein R (2001) The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104:57–69

    CAS  PubMed  Google Scholar 

  • Batlle E, Henderson JT, Beghtel H, Born MM van den, Sancho E, Huls G, Meeldijk J, Robertson J, Wetering N van de, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111:251–263

    CAS  PubMed  Google Scholar 

  • Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DS, Pozzi A, Jackson D, Lin C, Chen J (2002) Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21:7011–7026

    Article  CAS  PubMed  Google Scholar 

  • Burger PC, Chandler DB, Klintworth GK (1983) Corneal neovascularization as studied by scanning electron microscopy of vascular casts. Lab Invest 48:169–180

    CAS  PubMed  Google Scholar 

  • Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS (2002) Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 62:2840–2847

    CAS  PubMed  Google Scholar 

  • Carter N, Nakamoto T, Hirai H, Hunter T (2002) EphrinA1-induced cytoskeletal re-organization requires FAK and p130(cas). Nat Cell Biol 4:565–573

    CAS  PubMed  Google Scholar 

  • Chen E, Xia G, Kundra A, Smith DL, Masood R, Gill P (2003) EphB4/ephrinB2 expression by malignant mesothelioma as a potential therapeutic target. Proc Am Assoc Cancer Res 44:475

    Google Scholar 

  • Cheng N, Brantley DM, Chen J (2002) The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev 13:75–85

    Article  CAS  PubMed  Google Scholar 

  • Dodelet VC, Pasquale EB (2000) Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19:5614–5619

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21:309–345

    Article  CAS  PubMed  Google Scholar 

  • Füller T, Korff T, Kilian A, Dandekar G, Augustin HG (2003) Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci 116:2461–2470

    Article  PubMed  Google Scholar 

  • Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230:151–160

    CAS  PubMed  Google Scholar 

  • Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4:403–414

    CAS  PubMed  Google Scholar 

  • Gimbrone MA, Cotran RS, Leapman SB, Folkman J (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52:413–427

    PubMed  Google Scholar 

  • Hamada K, Oike Y Ito Y, Maekawa H, Miyata K, Shimomura T, Suda T (2003) Distinct roles of ephrin-B2 forward and EphB4 reverse signaling in endothelial cells. Arterioscler Thromb Vasc Biol 23:190–197

    Article  CAS  PubMed  Google Scholar 

  • Holmberg J, Clarke DL, Frisen J (2000) Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408:203–206

    Article  CAS  PubMed  Google Scholar 

  • Holzman LB, Marks RM, Dixit VM (1990) A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol Cell Biol 10:5830–5838

    CAS  PubMed  Google Scholar 

  • Huynh-Do U, Stein E, Lane AA, Liu H, Cerretti DP, Daniel TO (1999) Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphaVbeta3 and alpha5beta1 integrins. EMBO J 18:2165–2173

    Article  CAS  PubMed  Google Scholar 

  • Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3:475–486

    Article  CAS  PubMed  Google Scholar 

  • Lawson ND, Weinstein BM (2002) Arteries and veins: making a difference with zebrafish. Nat Rev Genet 3:674–682

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Ahmad SA, Jung YD, Reinmuth N, Fan F, Bucana CD, Ellis LM (2002) Coexpression of ephrin-Bs and their receptors in colon carcinoma. Cancer 94:934–939

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Yu G, Wu Y, Wu J (2002) EphB6 crosslinking results in costimulation of T cells. J Clin Invest 110:1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693–705

    CAS  PubMed  Google Scholar 

  • Munoz JJ, Alonso CL, Sacedon R, Crompton T, Vicente A, Jimenez E, Varas A, Zapata AG (2002) Expression and function of the Eph A receptors and their ligands ephrins A in the rat thymus. J Immunol 169:177–184

    CAS  PubMed  Google Scholar 

  • Nakamoto M, Bergemann AD (2002) Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc Res Tech 59:58–67

    Article  CAS  PubMed  Google Scholar 

  • Nikolova Z, Djonov V, Zuercher G, Andres AC, Ziemiecki A (1998) Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis. J Cell Sci 111:2741–2751

    CAS  PubMed  Google Scholar 

  • Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB (2000) The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19:6043–6052

    Article  CAS  PubMed  Google Scholar 

  • Oike Y, Ito Y, Hamada K, Zhang XQ, Miyata K, Arai F, Inada T, Araki K, Nakagata N, Takeya M, Kisanuki YY, Yanagisawa M, Gale NW, Suda T (2002) Regulation of vasculogenesis and angiogenesis by EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells. Blood 100:1326–1333

    CAS  PubMed  Google Scholar 

  • Othman-Hassan K, Patel K, Papoutsi M, Rodriguez-Niedenfuhr M, Christ B, Wilting J (2001) Arterial identity of endothelial cells is controlled by local cues. Dev Biol 237:398–409

    CAS  PubMed  Google Scholar 

  • Palmer A, Klein R (2003) Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev 17:(in press)

  • Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, Deutsch U, Klein R (2002) EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell 9:725–737

    CAS  PubMed  Google Scholar 

  • Pandey A, Shao H, Marks RM, Polverini PJ, Dixit VM (1995) Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science 268:567–569

    Google Scholar 

  • Shin D, Garcia-Cardena G, Hayashi SI, Gerety S, Asahara T, Stavrakis G, Isner J, Folkman J, Gimbrone MA, Anderson DJ (2001) Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230:139–150

    CAS  PubMed  Google Scholar 

  • Stephenson SA, Slomka S, Douglas EL, Hewett PJ, Hardingham JE (2001) Receptor protein tyrosine kinase EphB4 is up-regulated in colon cancer. Bull Menninger Clin Mol Biol 2:15

    Article  CAS  Google Scholar 

  • Suenobu S, Takakura N, Inada T, Yamada Y, Yuasa H, Zhang XQ, Sakano S, Oike Y, Suda T (2002) A role of EphB4 receptor and its ligand, ephrin-B2, in erythropoiesis. Biochem Biophys Res Commun 293:1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Takai N, Miyazaki T, Fujisawa K, Nasu K, Miyakawa I (2001) Expression of receptor tyrosine kinase EphB4 and its ligand ephrin-B2 is associated with malignant potential in endometrial cancer. Oncol Rep 8:567–573

    CAS  PubMed  Google Scholar 

  • Tang XX, Evans AE, Zhao H, Cnaan A, London W, Cohn SL, Brodeur GM, Ikegaki N (1999) High-level expression of EPHB6, EFNB2, and EFNB3 is associated with low tumor stage and high TrkA expression in human neuroblastomas. Clin Cancer Res 5:1491–1496

    CAS  PubMed  Google Scholar 

  • Tang XX, Zhao H, Robinson ME, Cohen B, Cnaan A, London W, Cohn SL, Cheung NK, Brodeur GM, Evans AE, Ikegaki N (2000) Implications of EPHB6, EFNB2, and EFNB3 expressions in human neuroblastoma. Proc Natl Acad Sci USA 97:10936–10941

    Article  CAS  PubMed  Google Scholar 

  • Vogt T, Stolz W, Welsh J, Jung B, Kerbel RS, Kobayashi H, Landthaler M, McClelland M (1998) Overexpression of Lerk-5/Eplg5 messenger RNA: a novel marker for increased tumorigenicity and metastatic potential in human malignant melanomas. Clin Cancer Res 4:791–797

    CAS  PubMed  Google Scholar 

  • Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    CAS  PubMed  Google Scholar 

  • Wilkinson DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2:155–164

    Article  CAS  PubMed  Google Scholar 

  • Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS (2001) EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 61:2301–2306

    CAS  PubMed  Google Scholar 

  • Zhang XQ, Takakura N, Oike Y, Inada T, Gale NW, Yancopoulos GD, Suda T (2001) Stromal cells expressing ephrin-B2 promote the growth and sprouting of ephrin-B2(+) endothelial cells. Blood 98:1028–1037

    Article  CAS  PubMed  Google Scholar 

  • Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414:216–220

    Article  CAS  PubMed  Google Scholar 

  • Zou JX, Wang B, Kalo MS, Zisch AH, Pasquale EB, Ruoslahti E (1999) An Eph receptor regulates integrin activity through R-Ras. Proc Natl Acad Sci USA 96:13813–13818

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Thomas Korff (Göttingen) and Tim Füller (Freiburg) for making the unpublished data in Fig. 3 available for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hellmut G. Augustin.

Additional information

Eph/ephrin work in the laboratory of the authors is supported by a grant from the Deutsche Forschungsgemeinschaft (Au83/3–2 within the SPP1069 "Angiogenesis")

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustin, H.G., Reiss, Y. EphB receptors and ephrinB ligands: regulators of vascular assembly and homeostasis. Cell Tissue Res 314, 25–31 (2003). https://doi.org/10.1007/s00441-003-0770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0770-9

Keywords

Navigation