Skip to main content
Log in

Unraveling the complex genetic model for cystic fibrosis: pleiotropic effects of modifier genes on early cystic fibrosis-related morbidities

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The existence of pleiotropy in disorders with multi-organ involvement can suggest therapeutic targets that could ameliorate overall disease severity. Here we assessed pleiotropy of modifier genes in cystic fibrosis (CF). CF, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, affects the lungs, liver, pancreas and intestines. However, modifier genes contribute to variable disease severity across affected organs, even in individuals with the same CFTR genotype. We sought to determine whether SLC26A9, SLC9A3 and SLC6A14, that contribute to meconium ileus in CF, are pleiotropic for other early-affecting CF co-morbidities. In the Canadian CF population, we assessed evidence for pleiotropic effects on (1) pediatric lung disease severity (n = 815), (2) age at first acquisition of Pseudomonas aeruginosa (P. aeruginosa) (n = 730), and (3) prenatal pancreatic damage measured by immunoreactive trypsinogen (n = 126). A multiple-phenotype analytic strategy assessed evidence for pleiotropy in the presence of phenotypic correlation. We required the same alleles to be associated with detrimental effects. SLC26A9 was pleiotropic for meconium ileus and pancreatic damage (p = 0.002 at rs7512462), SLC9A3 for meconium ileus and lung disease (p = 1.5 × 10−6 at rs17563161), and SLC6A14 for meconium ileus and both lung disease and age at first P. aeruginosa infection (p = 0.0002 and p = 0.006 at rs3788766, respectively). The meconium ileus risk alleles in SLC26A9, SLC9A3 and SLC6A14 are pleiotropic, increasing risk for other early CF co-morbidities. Furthermore, co-morbidities affecting the same organ tended to associate with the same genes. The existence of pleiotropy within this single disorder suggests that complementary therapeutic strategies to augment solute transport will benefit multiple CF-associated tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Although some moderate variability in co-morbidities may be explained by the spectrum of these severe CFTR mutations (Ooi et al. 2011; Gonska et al. 2012), power to detect these small effect sizes in realistic sample sizes is challenging, reflecting the low frequency of the individual mutations and anticipated modest contribution beyond the “severe” CFTR genotype dichotomy.

References

  • Adler AI, Shine BSF, Chamnan P, Haworth CS, Bilton D (2008) Genetic determinants and epidemiology of cystic fibrosis-related diabetes: results from a British cohort of children and adults. Diabetes Care 31:1789–1794. doi:10.2337/dc08-0466

    Article  PubMed  Google Scholar 

  • Ahmed N, Corey M, Forstner G, Zielenski J, Tsui L-C, Ellis L, Tullis E, Durie P (2003) Molecular consequences of cystic fibrosis transmembrane regulator (CFTR) gene mutations in the exocrine pancreas. Gut 52:1159–1164. doi:10.1136/gut.52.8.1159

    Article  CAS  PubMed  Google Scholar 

  • Anderson CM, Ganapathy V, Thwaites DT (2008) Human solute carrier SLC6A14 is the beta-alanine carrier. J Physiol 586:4061–4067. doi:10.1113/jphysiol.2008.154500

    Article  CAS  PubMed  Google Scholar 

  • Avella M, Loriol C, Boulukos K, Borgese F, Ehrenfeld J (2011) SLC26A9 stimulates CFTR expression and function in human bronchial cell lines. J Cell Physiol 226:212–223. doi:10.1002/jcp.22328

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JR, Friedman KJ, Ling SC, Pace RG, Bell SC, Bourke B, Castaldo G, Castellani C, Cipolli M, Colombo C, Colombo JL, Debray D, Fernandez A, Lacaille F, Macek M, Jr, Rowland M, Salvatore F, Taylor CJ, Wainwright C, Wilschanski M, Zemkova D, Hannah WB, Phillips MJ, Corey M, Zielenski J, Dorfman R, Wang Y, Zou F, Silverman LM, Drumm ML, Wright FA, Lange EM, Durie PR, Knowles MR (2009) for the Gene Modifier Study Group. Genetic modifiers of liver disease in cystic fibrosis. JAMA 302:1076-1083. doi:10.1001/jama.2009.1295

    Google Scholar 

  • Bertrand CA, Zhang R, Pilewski JM, Frizzell RA (2009) SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia. J Gen Physiol 133:421–438. doi:10.1085/jgp.200810097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blackman SM, Deering–Brose R, McWilliams R, Naughton K, Coleman B, Lai T, Algire M, Beck S, Hoover-Fong J, Hamosh A, Fallin M, West K, Arking D, Chakravarti A, Cutler D, Cutting G (2006) Relative contribution of genetic and nongenetic modifiers to intestinal obstruction in cystic fibrosis. Gastroenterology 131:1030–1039

    Article  PubMed Central  PubMed  Google Scholar 

  • Blackman S, Hsu S, Ritter S, Naughton K, Wright F, Drumm M, Knowles M, Cutting G (2009a) A susceptibility gene for type 2 diabetes confers substantial risk for diabetes complicating cystic fibrosis. Diabetologia 52:1858–1865. doi:10.1007/s00125-009-1436-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blackman SM, Hsu S, Vanscoy LL, Collaco JM, Ritter SE, Naughton K, Cutting GR (2009b) Genetic modifiers play a substantial role in diabetes complicating cystic fibrosis. J Clin Endocrinol Metab 94:1302–1309. doi:10.1210/jc.2008-2186

    Article  CAS  PubMed  Google Scholar 

  • Blackman SM, Commander CW, Watson C, Arcara KM, Strug LJ, Stonebraker JR, Wright FA, Rommens JM, Sun L, Pace RG, Norris SA, Durie PR, Drumm ML, Knowles MR, Cutting GR (2013) Genetic modifiers of cystic fibrosis-related diabetes. Diabetes. doi:10.2337/db13-0510

    PubMed  Google Scholar 

  • Bradford EM, Sartor MA, Gawenis LR, Clarke LL, Shull GE (2009) Reduced NHE3-mediated Na+ absorption increases survival and decreases the incidence of intestinal obstructions in cystic fibrosis mice. Am J Physiol Gastrointest Liver Physiol 296:G886–G898. doi:10.1152/ajpgi.90520.2008

    Article  CAS  PubMed  Google Scholar 

  • Chang MH, Plata C, Sindic A, Ranatunga WK, Chen AP, Zandi-Nejad K, Chan KW, Thompson J, Mount DB, Romero MF (2009a) Slc26a9 is inhibited by the R-region of the cystic fibrosis transmembrane conductance regulator via the STAS domain. J Biol Chem 284:28306–28318. doi:10.1074/jbc.M109.001669

    Article  CAS  PubMed  Google Scholar 

  • Chang MH, Plata C, Zandi-Nejad K, Sindic A, Sussman CR, Mercado A, Broumand V, Raghuram V, Mount DB, Romero MF (2009b) Slc26a9-anion exchanger, channel and Na+ transporter. J Membr Biol 228:125–140. doi:10.1007/s00232-009-9165-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collaco JM, Morrow CB, Green DM, Cutting GR, Mogayzel PJ (2013) Environmental allergies and respiratory morbidities in cystic fibrosis. Pediatric Pulmonol. doi:10.1002/ppul.22700

    Google Scholar 

  • Corey M, Edwards L, Levison H, Knowles M (1997) Longitudinal analysis of pulmonary function decline in patients with cystic fibrosis. J Pediatr 131:809–814

    Article  CAS  PubMed  Google Scholar 

  • Couper RTL, Corey M, Moore DJ, Fisher LJ, Forstner GG, Durie PR (1992) Decline of exocrine pancreatic function in cystic fibrosis patients with pancreatic sufficiency. Pediatr Res 32:179–182

    Article  CAS  PubMed  Google Scholar 

  • Couper RTL, Corey M, Durie PR, Forstner GG, Moore DJ (1995) Longitudinal evaluation of serum trypsinogen measurement in pancreatic-insufficient and pancreatic-sufficient patients with cystic fibrosis. J Pediatr 127:408–413. doi:10.1016/S0022-3476(95)70072-2

    Article  CAS  PubMed  Google Scholar 

  • Cystic Fibrosis Canada (2010) Canadian Cystic Fibrosis Patient Data Registry Report. (http://www.cysticfibrosis.ca/assets/files/pdf/cpdr_reporte.pdf). Toronto, Ontario

  • Dorfman R, Taylor C, Lin F, Sun L, Sandford A, Paré P, Berthiaume Y, Corey M, Durie P, Zielenski J, On behalf of the members of the Canadian Consortium for CFGS (2011) Modulatory effect of the SLC9A3 gene on susceptibility to infections and pulmonary function in children with cystic fibrosis. Pediatr Pulmonol 46:385–392. doi:10.1002/ppul.21372

    Article  PubMed  Google Scholar 

  • Durie PR, Forstner GG (1999) The exocrine pancreas. In: Cystic fibrosis in adults. Lippincott-Raven Publishers, Philadelphia, pp 261–287

  • Durie PR, Forstner GG, Gaskin KJ, Moore DJ, Cleghorn GJ, Wong SS, Corey ML (1986) Age-related alterations of immunoreactive pancreatic cationic trypsinogen in sera from cystic fibrosis patients with and without pancreatic insufficiency. Pediatr Res 20:209–213

    Article  CAS  PubMed  Google Scholar 

  • Durie PR, Soave D, Gonska T, Ip W, Keenan K, Miller M, Sun L, Rommens J, Strug LJ (2012) Early exocrine pancreatic damage determined by serum immunoreactive trypsinogen is a significant predictor of CF-related diabetes at a later age.  North American Cystic Fibrosis Conference, Orlando, Florida. Pediatr Pulmonol 47(S35):408

    Google Scholar 

  • Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL (2002) Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100. doi:10.1002/ppul.10127

    Article  PubMed  Google Scholar 

  • Emond MJ, Louie T, Emerson J, Zhao W, Mathias RA, Knowles MR, Wright FA, Rieder MJ, Tabor HK, Nickerson DA, Barnes KC, Gibson RL, Bamshad MJ (2012) Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat Genet 44:886–889. doi:10.1038/ng.2344

    Google Scholar 

  • Finkelstein SM, Wielinski CL, Elliott GR, Warwick WJ, Barbosa J, Wu SC, Klein DJ (1988) Diabetes mellitus associated with cystic fibrosis. J Pediatr 112:373–377

    Article  CAS  PubMed  Google Scholar 

  • Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, García-Girón C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kähäri AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ritchie GRS, Ruffier M, Schuster M, Sheppard D, Sobral D, Taylor K, Thormann A, Trevanion S, White S, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Harrow J, Herrero J, Hubbard TJP, Johnson N, Kinsella R, Parker A, Spudich G, Yates A, Zadissa A, Searle SMJ (2013) Ensembl 2013. Nucleic Acids Res 41:D48–D55. doi:10.1093/nar/gks1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geokas MC, Largman C, Brodrick JW, Johnson JH (1979) Determination of human pancreatic cationic trypsinogen in serum by radioimmunoassay. Am J Physiol Endocrinol Metab 236:E77–E83

    CAS  Google Scholar 

  • Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, Sanna-Cherchi S, Men CJ, Julian BA, Wyatt RJ, Novak J, He JC, Wang H, Lv J, Zhu L, Wang W, Wang Z, Yasuno K, Gunel M, Mane S, Umlauf S, Tikhonova I, Beerman I, Savoldi S, Magistroni R, Ghiggeri GM, Bodria M, Lugani F, Ravani P, Ponticelli C, Allegri L, Boscutti G, Frasca G, Amore A, Peruzzi L, Coppo R, Izzi C, Viola BF, Prati E, Salvadori M, Mignani R, Gesualdo L, Bertinetto F, Mesiano P, Amoroso A, Scolari F, Chen N, Zhang H, Lifton RP (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327. doi:10.1038/ng.787

    Google Scholar 

  • Gonska T, Keenan K, Sontag M, Castellani C, Cipolli M, Naehrlich L, Dupuis A, Dorfman R, Taylor C, Sun L, Ooi C, Rommens J, Strug L, Durie P (2012) Meconium ileus prevalence score as new phenotypic marker for the severity of CFTR mutations. North American Cystic Fibrosis Conference, Orlando, Florida. Pediatr Pulmonol 47(S35):386

    Google Scholar 

  • Grasemann H, Ratjen F (2013) Early lung disease in cystic fibrosis. Lancet 1:148–157

    Google Scholar 

  • Johnson J-A, Bush A, Buchdahl R (2010) Does presenting with meconium ileus affect the prognosis of children with cystic fibrosis? Pediatr Pulmonol 45:951–958. doi:10.1002/ppul.21271

    Article  PubMed  Google Scholar 

  • Kappler M, Feilcke M, Schröter C, Kraxner A, Griese M (2009) Long-term pulmonary outcome after meconium ileus in cystic fibrosis. Pediatr Pulmonol 44:1201–1206. doi:10.1002/ppul.21119

    Article  PubMed  Google Scholar 

  • Kerem B, Rommens J, Buchanan J, Markiewicz D, Cox T, Chakravarti A, Buchwald M, Tsui L (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080. doi:10.1126/science.2570460

    Article  CAS  PubMed  Google Scholar 

  • Kerem E, Reisman J, Corey M, Canny GJ, Levison H (1992) Prediction of mortality in patients with cystic fibrosis. N Engl J Med 326:1187–1191. doi:10.1056/NEJM199204303261804

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Rainisio M, Madessani U, Harms HK, Hodson ME, Mastella G, McKenzie SG, Navarro J, Strandvik B (2001) Presence of cystic fibrosis-related diabetes mellitus is tightly linked to poor lung function in patients with cystic fibrosis: data from the European Epidemiologic Registry of Cystic Fibrosis. Pediatr Pulmonol 32:343–350. doi:10.1002/ppul.1142

    Article  CAS  PubMed  Google Scholar 

  • Lanng S, Thorsteinsson B, Nerup J, Koch C (1992) Influence of the development of diabetes mellitus on clinical status in patients with cystic fibrosis. Eur J Pediatr 151:684–687

    Article  CAS  PubMed  Google Scholar 

  • Li W, Sun L, Corey M, Zou F, Lee S, Cojocaru AL, Taylor C, Blackman SM, Stephenson A, Sandford AJ, Dorfman R, Drumm ML, Cutting GR, Knowles MR, Durie P, Wright FA, Strug LJ (2011) Understanding the population structure of North American patients with cystic fibrosis. Clin Genet 79:136–146. doi:10.1111/j.1399-0004.2010.01502.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M-X, Yeung JY, Cherny S, Sham P (2012) Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 131:747–756. doi:10.1007/s00439-011-1118-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall BC, Butler SM, Stoddard M, Moran AM, Liou TG, Morgan WJ (2005) Epidemiology of cystic fibrosis-related diabetes. J Pediatr 146:681–687. doi:10.1016/j.jpeds.2004.12.039

    Article  CAS  PubMed  Google Scholar 

  • Milla CE, Billings J, Moran A (2005) Diabetes is associated with dramatically decreased survival in female but not male subjects with cystic fibrosis. Diabetes Care 28:2141–2144. doi:10.2337/diacare.28.9.2141

    Article  PubMed  Google Scholar 

  • Moran A, Dunitz J, Nathan B, Saeed A, Holme B, Thomas W (2009) Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care 32:1626–1631. doi:10.2337/dc09-0586

    Article  PubMed  Google Scholar 

  • Moran A, Becker D, Casella SJ, Gottlieb PA, Kirkman MS, Marshall BC, Slovis B (2010) Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-related diabetes: a technical review. Diabetes Care 33:2677–2683. doi:33/12/267710.2337/dc10-1279

    Article  PubMed  Google Scholar 

  • Munck A, Gérardin M, Alberti C, Ajzenman C, Lebourgeois M, Aigrain Y, Navarro J (2006) Clinical outcome of cystic fibrosis presenting with or without meconium ileus: a matched cohort study. J Pediatr Surg 41:1556–1560. doi:10.1016/j.jpedsurg.2006.05.014

    Article  PubMed  Google Scholar 

  • O’Reilly PF, Hoggart CJ, Pomyen Y, Calboli FCF, Elliott P, Jarvelin M-R, Coin LJM (2012) MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS ONE 7:e34861. doi:10.1371/journal.pone.0034861

    Article  PubMed Central  PubMed  Google Scholar 

  • Ooi CY, Dorfman R, Cipolli M, Gonska T, Castellani C, Keenan K, Freedman SD, Zielenski J, Berthiaume Y, Corey M, Schibli S, Tullis E, Durie PR (2011) Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology 140:153–161. doi:10.1053/j.gastro.2010.09.046

    Article  CAS  PubMed  Google Scholar 

  • Ousingsawat J, Schreiber R, Kunzelmann K (2012) Differential contribution of SLC26A9 to Cl conductance in polarized and non-polarized epithelial cells. J Cell Physiol 227:2323–2329. doi:10.1002/jcp.22967

    Article  CAS  PubMed  Google Scholar 

  • Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet TIG 29:66–73

    Article  CAS  Google Scholar 

  • R Core Development Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ren CL, Rosenfeld M, Mayer OH, Davis SD, Kloster M, Castile RG, Hiatt PW, Hart M, Johnson R, Jones P, Brumback LC, Kerby GS (2012) Analysis of the associations between lung function and clinical features in preschool children with cystic fibrosis. Pediatr Pulmonol 47:574–581. doi:10.1002/ppul.21590

    Article  PubMed  Google Scholar 

  • Rolon MA, Benali K, Munck A, Navarro J, Clement A, Tubiana-Rufi N, Czernichow P, Polak M (2001) Cystic fibrosis-related diabetes mellitus: clinical impact of prediabetes and effects of insulin therapy. Acta Paediatr 90:860–867. doi:10.1111/j.1651-2227.2001.tb02446.x

    Article  CAS  PubMed  Google Scholar 

  • Schaedel C, de Monestrol I, Hjelte L, Johannesson M, Kornfält R, Lindblad A, Strandvik B, Wahlgren L, Holmberg L (2002) Predictors of deterioration of lung function in cystic fibrosis. Pediatr Pulmonol 33:483–491. doi:10.1002/ppul.10100

    Article  CAS  PubMed  Google Scholar 

  • Schluchter MD, Konstan MW, Davis PB (2002) Jointly modelling the relationship between survival and pulmonary function in cystic fibrosis patients. Stat Med 21:1271–1287. doi:10.1002/sim.1104

    Article  PubMed  Google Scholar 

  • Sivakumaran S, Agakov F, Theodoratou E, Prendergast James G, Zgaga L, Manolio T, Rudan I, McKeigue P, Wilson James F, Campbell H (2011) Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet 89:607–618. doi:10.1016/j.ajhg.2011.10.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sloan JL, Mager S (1999) Cloning and functional expression of a human Na(+) and Cl(−)-dependent neutral and cationic amino acid transporter B(0 +). J Biol Chem 274:23740–23745

    Article  CAS  PubMed  Google Scholar 

  • Solomon MP, Wilson DC, Corey M, Kalnins D, Zielenski J, Tsui LC, Pencharz P, Durie P, Sweezey NB (2003) Glucose intolerance in children with cystic fibrosis. J Pediatr 142:128–132. doi:S0022-3476(02)40207-710.1067/mpd.2003.5

    Article  CAS  PubMed  Google Scholar 

  • Sontag MK, Corey M, Hokanson JE, Marshall JA, Sommer SS, Zerbe GO, Accurso FJ (2006) Genetic and physiologic correlates of longitudinal immunoreactive trypsinogen decline in infants with cystic fibrosis identified through newborn screening. J Pediatr 149(650–657):e2

    Google Scholar 

  • Sun L, Rommens JM, Corvol H, Li W, Li X, Chiang TA, Lin F, Dorfman R, Busson PF, Parekh RV, Zelenika D, Blackman SM, Corey M, Doshi VK, Henderson L, Naughton KM, O’Neal WK, Pace RG, Stonebraker JR, Wood SD, Wright FA, Zielenski J, Clement A, Drumm ML, Boelle PY, Cutting GR, Knowles MR, Durie PR, Strug LJ (2012) Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis. Nat Genet 44:562–569. doi:10.1038/ng.2221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor C, Commander CW, Collaco JM, Strug LJ, Li W, Wright FA, Webel AD, Pace RG, Stonebraker JR, Naughton K, Dorfman R, Sandford A, Blackman SM, Berthiaume Y, Paré P, Drumm ML, Zielenski J, Durie P, Cutting GR, Knowles MR, Corey M (2011) A novel lung disease phenotype adjusted for mortality attrition for cystic fibrosis Genetic modifier studies. Pediatr Pulmonol 46:857–869. doi:10.1002/ppul.21456

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanscoy LL, Blackman SM, Collaco JM, Bowers A, Lai T, Naughton K, Algire M, McWilliams R, Beck S, Hoover-Fong J, Hamosh A, Cutler D, Cutting GR (2007) Heritability of lung disease severity in cystic fibrosis. Am J Respir Crit Care Med 175:1036–1043. doi:10.1164/rccm.200608-1164OC

    Article  CAS  PubMed  Google Scholar 

  • Wilcken B (2009) Cystic fibrosis: refining the approach to newborn screening. J Pediatr 155:605–606. doi:10.1016/j.jpeds.2009.05.015

    Article  PubMed  Google Scholar 

  • Wright FA, Strug LJ, Doshi VK, Commander CW, Blackman SM, Sun L, Berthiaume Y, Cutler D, Cojocaru A, Collaco JM, Corey M, Dorfman R, Goddard K, Green D, Kent JW, Lange EM, Lee S, Li W, Luo J, Mayhew GM, Naughton KM, Pace RG, Pare P, Rommens JM, Sandford A, Stonebraker JR, Sun W, Taylor C, Vanscoy LL, Zou F, Blangero J, Zielenski J, O’Neal WK, Drumm ML, Durie PR, Knowles MR, Cutting GR (2011) Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2. Nat Genet 43:539–546. doi:10.1038/ng.838

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients and families who participated in this study. We would like to thank Yves Berthiaume MD (University of Montreal), and Andrew Sandford PhD and Peter Pare MD (University of British Columbia) for ascertainment of Canadian phenotype data and DNA; and the contributing Canadian CF centers and principal investigators. This work was supported in part by Genome Canada through the Ontario Genomics Institute as per research agreement 2004-OGI-3-05 with the Ontario Research Fund, Research Excellence Program; Cystic Fibrosis Canada (CF Canada) grants to PD and LJS; Natural Sciences and Engineering Research Council of Canada (NSERC) to LJS; Canadian Institutes of Health Research (CIHR) 119556 to LJS; NSERC and CIHR grants to LS. Funds for genome-wide genotyping of Canadian participants were generously provided by the U.S. CFF. This research was also supported by funding from Training grant GET-101831. Trainees WL, MRM, and DS are fellows of CIHR STAGE (Strategic Training for Advanced Genetic Epidemiology)—CIHR Training Grant in Genetic Epidemiology and Statistical Genetics. WL is also supported by NSERC. The authors have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa J. Strug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Soave, D., Miller, M.R. et al. Unraveling the complex genetic model for cystic fibrosis: pleiotropic effects of modifier genes on early cystic fibrosis-related morbidities. Hum Genet 133, 151–161 (2014). https://doi.org/10.1007/s00439-013-1363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1363-7

Keywords

Navigation