Skip to main content

Molecular Genetics of Cystic Fibrosis

  • Chapter
  • First Online:
Cystic Fibrosis

Part of the book series: Respiratory Medicine ((RM))

  • 1484 Accesses

Abstract

Cystic fibrosis is an autosomal recessive condition caused by loss of function of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Many different DNA sequence variants can cause CF by affecting a variety of molecular mechanisms. Identifying, classifying, and understanding the mechanistic consequences of pathogenic CFTR variants have long been the primary goals of CF molecular genetics research. The functional consequences of many CFTR variants have been studied utilizing epidemiological studies, detailed clinical studies, and various model organisms and model systems. Capitalizing on the mechanistic understanding of specific pathogenic variants enabled development of small molecule modulators of mutant forms of CFTR. Future modulators will likely also rely on understanding the functional consequences of pathogenic variants to deliver effective molecular therapies to more individuals with CF. At the same time, research into gene therapy continues to progress with the promise of delivering long-term treatment for all individuals with CF. However, CF can be highly variable and individuals with the same CFTR genotype may present with differing severity of phenotype or therapeutic response. Thus, a significant portion of the variability underlying CF lies separate from the disease-causing variant, hidden among cis variation within CFTR as well as trans variation at genetic loci distinct from CFTR. Understanding the total variation contained in the genome of CF patients will allow for a complete understanding of their phenotype, enabling development and delivery of precise medical care for every individual living with CF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–73. https://doi.org/10.1126/science.2475911.

    Article  CAS  PubMed  Google Scholar 

  2. Sosnay PR, Siklosi KR, Van Goor F, Kaniecki K, Yu H, Sharma N, et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet. 2013;45. https://doi.org/10.1038/ng.2745.

  3. Azad AK, Rauh R, Vermeulen F, Jaspers M, Korbmacher J, Boissier B, et al. Mutations in the amiloride-sensitive epithelial sodium channel in patients with cystic fibrosis-like disease. Hum Mutat. 2009;30:1093–103. https://doi.org/10.1002/humu.21011.

    Article  CAS  PubMed  Google Scholar 

  4. Lee M, Vecchio-Pagán B, Sharma N, Waheed A, Li X, Raraigh KS, et al. Loss of carbonic anhydrase XII function in individuals with elevated sweat chloride concentration and pulmonary airway disease. Hum Mol Genet. 2016;25:1923–33. https://doi.org/10.1093/hmg/ddw065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brock DJH. Carrier screening for cystic fibrosis. Prenat Diagn. 1994;14:1243–52. https://doi.org/10.1002/pd.1970141309.

    Article  CAS  PubMed  Google Scholar 

  6. Yamashiro Y, Shimizu T, Oguchi S, Shioya T, Nagata S, Ohtsuka Y. The estimated incidence of cystic fibrosis in Japan. J Pediatr Gastroenterol Nutr. 1997;24:544–7.

    Article  CAS  PubMed  Google Scholar 

  7. O’Donald P. The evolution of selective advantage in a deleterious mutation. Genetics. 1967;56:399–404.

    PubMed  PubMed Central  Google Scholar 

  8. Kerem B-S, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, et al. Identification of the cystic firbrosis gene: genetic analysis. Science. 1989;245:1073.

    Article  CAS  PubMed  Google Scholar 

  9. Bobadilla JL, Macek M, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations—correlation with incidence data and application to screening. Hum Mutat. 2002;19:575–606. https://doi.org/10.1002/humu.10041.

    Article  CAS  PubMed  Google Scholar 

  10. Grody WW, Cutting GR, Klinger KW, Richards CS, Watson MS, Desnick RJ. Laboratory standards and guidelines for population-based cystic fibrosis carrier screening. Genet Med. 2001;3:149–54. https://doi.org/10.1097/00125817-200103000-00010.

    Article  CAS  PubMed  Google Scholar 

  11. Strom CM, Crossley B, Buller-Buerkle A, Jarvis M, Quan F, Peng M, et al. Cystic fibrosis testing 8 years on: lessons learned from carrier screening and sequencing analysis. Genet Med. 2011;13:166–72. https://doi.org/10.1097/GIM.0b013e3181fa24c4.

    Article  PubMed  Google Scholar 

  12. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91. https://doi.org/10.1038/nature19057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keiser NW, Engelhardt JF. New animal models of cystic fibrosis: what are they teaching us? Curr Opin Pulm Med. 2011;17:478–83. https://doi.org/10.1097/MCP.0b013e32834b14c9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lavelle GM, White MM, Browne N, McElvaney NG, Reeves EP. Animal models of cystic fibrosis pathology: phenotypic parallels and divergences. Biomed Res Int. 2016;2016:e5258727. https://doi.org/10.1155/2016/5258727.

    Article  CAS  Google Scholar 

  15. Ghosh R, Oak N, Plon SE. Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Biol. 2017;18:225. https://doi.org/10.1186/s13059-017-1353-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raraigh KS, Han ST, Davis E, Evans TA, Pellicore MJ, McCague AF, et al. Functional assays are essential for interpretation of missense variants associated with variable expressivity. Am J Hum Genet. 2018;0. https://doi.org/10.1016/j.ajhg.2018.04.003.

  17. Yu H, Burton B, Huang C-J, Worley J, Cao D, Johnson JP, et al. Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros. 2012;11:237–45. https://doi.org/10.1016/j.jcf.2011.12.005.

    Article  CAS  PubMed  Google Scholar 

  18. Van Goor F, Yu H, Burton B, Hoffman BJ. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J Cyst Fibros. 2014;13:29–36. https://doi.org/10.1016/j.jcf.2013.06.008.

    Article  CAS  PubMed  Google Scholar 

  19. Han ST, Rab A, Pellicore MJ, Davis EF, McCague AF, Evans TA, et al. Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight. 2018;3:pii: 121159. https://doi.org/10.1172/jci.insight.121159.

    Article  Google Scholar 

  20. Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature. 2018;562:217. https://doi.org/10.1038/s41586-018-0461-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mighell TL, Evans-Dutson S, O’Roak BJ. A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype-phenotype relationships. Am J Hum Genet. 2018;102:943–55. https://doi.org/10.1016/j.ajhg.2018.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee M, Roos P, Sharma N, Atalar M, Evans TA, Pellicore MJ, et al. Systematic computational identification of variants that activate exonic and intronic cryptic splice sites. Am J Hum Genet. 2017;100:751–65. https://doi.org/10.1016/j.ajhg.2017.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Molinski SV, Gonska T, Huan LJ, Baskin B, Janahi IA, Ray PN, et al. Genetic, cell biological, and clinical interrogation of the CFTR mutation c.3700 A>G (p.Ile1234Val) informs strategies for future medical intervention. Genet Med. 2014;16:625–32. https://doi.org/10.1038/gim.2014.4.

    Article  CAS  PubMed  Google Scholar 

  24. Hinzpeter A, Aissat A, Sondo E, Costa C, Arous N, Gameiro C, et al. Alternative splicing at a NAGNAG acceptor site as a novel phenotype modifier. PLoS Genet. 2010;6:e1001153. https://doi.org/10.1371/journal.pgen.1001153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dalemans W, Barbry P, Champigny G, Jallat S, Jallat S, Dott K, et al. Altered chloride ion channel kinetics associated with the ΔF508 cystic fibrosis mutation. Nature. 1991;354:526–8. https://doi.org/10.1038/354526a0.

    Article  CAS  PubMed  Google Scholar 

  26. Van Goor F, Hadida S, Grootenhuis PDJ, Burton B, Cao D, Neuberger T, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A. 2009;106:18825–30. https://doi.org/10.1073/pnas.0904709106.

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Boeck K, Munck A, Walker S, Faro A, Hiatt P, Gilmartin G, et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibros. 2014;13:674–80. https://doi.org/10.1016/j.jcf.2014.09.005.

    Article  CAS  PubMed  Google Scholar 

  28. Ronan NJ, Fleming C, O’Callaghan G, Maher MM, Murphy DM, Plant BJ. THe role of ivacaftor in severe cystic fibrosis in a patient with the r117h mutation. Chest. 2015;148:e72–5. https://doi.org/10.1378/chest.14-3215.

    Article  PubMed  Google Scholar 

  29. Van Goor F, Hadida S, Grootenhuis PDJ, Burton B, Stack JH, Straley KS, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A. 2011;108:18843–8. https://doi.org/10.1073/pnas.1105787108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;0:null. https://doi.org/10.1056/NEJMoa1409547.

    Article  CAS  Google Scholar 

  31. Donaldson SH, Pilewski JM, Griese M, Cooke J, Viswanathan L, Tullis E, et al. Tezacaftor/ivacaftor in subjects with cystic fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR. Am J Respir Crit Care Med. 2017;197:214–24. https://doi.org/10.1164/rccm.201704-0717OC.

    Article  Google Scholar 

  32. Keating D, Marigowda G, Burr L, Daines C, Mall MA, McKone EF, et al. VX-445–tezacaftor–ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379:1612–20. https://doi.org/10.1056/NEJMoa1807120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davies JC, Moskowitz SM, Brown C, Horsley A, Mall MA, McKone EF, et al. VX-659–tezacaftor–ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379:1599–611. https://doi.org/10.1056/NEJMoa1807119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rowe SM, Daines C, Ringshausen FC, Kerem E, Wilson J, Tullis E, et al. Tezacaftor–ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med. 2017;377:2024–35. https://doi.org/10.1056/NEJMoa1709847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell. 2016;27:424–33. https://doi.org/10.1091/mbc.E14-04-0935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Awatade NT, Uliyakina I, Farinha CM, Clarke LA, Mendes K, Solé A, et al. Measurements of functional responses in human primary lung cells as a basis for personalized therapy for cystic fibrosis. EBioMedicine. 2015;2:147–53. https://doi.org/10.1016/j.ebiom.2014.12.005.

    Article  PubMed  Google Scholar 

  37. Rapino D, Sabirzhanova I, Lopes-Pacheco M, Grover R, Guggino WB, Cebotaru L. Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation. PLoS One. 2015;10:e0119796. https://doi.org/10.1371/journal.pone.0119796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DeStefano S, Gees M, Hwang T-C. Physiological and pharmacological characterization of the N1303K mutant CFTR. J Cyst Fibros. 2018;17:573–81. https://doi.org/10.1016/j.jcf.2018.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Noel S, Sermet-Gaudelus I, Sheppard DN. N1303K: leaving no stone unturned in the search for transformational therapeutics. J Cyst Fibros. 2018;17:555–7. https://doi.org/10.1016/j.jcf.2018.07.009.

    Article  PubMed  Google Scholar 

  40. Shieh PB. Emerging strategies in the treatment of Duchenne muscular dystrophy. Neurotherapeutics. 2018; https://doi.org/10.1007/s13311-018-00687-z.

  41. Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet. 1999;8:1893–900.

    Article  CAS  PubMed  Google Scholar 

  42. Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447:87–91. https://doi.org/10.1038/nature05756.

    Article  PubMed  Google Scholar 

  43. Aartsma-Rus A, Janson AAM, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F, et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet. 2003;12:907–14.

    Article  CAS  PubMed  Google Scholar 

  44. Steines B, Dickey DD, Bergen J, Excoffon KJDA, Weinstein JR, Li X, et al. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight. 2016;1. https://doi.org/10.1172/jci.insight.88728.

  45. Cooney AL, Alaiwa MHA, Shah VS, Bouzek DC, Stroik MR, Powers LS, et al. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight. 2016;1. https://doi.org/10.1172/jci.insight.88730.

  46. Alton EWFW, Beekman JM, Boyd AC, Brand J, Carlon MS, Connolly MM, et al. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis. Thorax. 2017;72:137–47. https://doi.org/10.1136/thoraxjnl-2016-208406.

    Article  PubMed  Google Scholar 

  47. Hacein-Bey-Abina S, Kalle CV, Schmidt M, McCormack MP, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.

    Article  CAS  PubMed  Google Scholar 

  48. Prickett M, Jain M. Gene therapy in cystic fibrosis. Transl Res. 2013;161:255–64. https://doi.org/10.1016/j.trsl.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  49. Harris H. Enzyme and protein polymorphism in human populations. Br Med Bull. 1969;25:5–13.

    Article  CAS  PubMed  Google Scholar 

  50. Boyle MP. Strategies for identifying modifier genes in cystic fibrosis. Proc Am Thorac Soc. 2007;4:52–7. https://doi.org/10.1513/pats.200605-129JG.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vecchio-Pagán B, Blackman SM, Lee M, Atalar M, Pellicore MJ, Pace RG, et al. Deep resequencing of CFTR in 762 F508del homozygotes reveals clusters of non-coding variants associated with cystic fibrosis disease traits. Hum Genome Var. 2016;3:16038. https://doi.org/10.1038/hgv.2016.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Claustres M, Thèze C, des Georges M, Baux D, Girodon E, Bienvenu T, et al. CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants. Hum Mutat. 2017; https://doi.org/10.1002/humu.23276.

  53. Kiesewetter S, Jr MM, Davis C, Curristin SM, Chu C-S, Graham C, et al. A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet. 1993;5:274–8. https://doi.org/10.1038/ng1193-274.

  54. Chu C-S, Trapnell BC, Curristin S, Cutting GR, Crystal RG. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet. 1993;3:151–6. https://doi.org/10.1038/ng0293-151.

    Article  CAS  PubMed  Google Scholar 

  55. Krasnov KV, Tzetis M, Cheng J, Guggino WB, Cutting GR. Localization studies of rare missense mutations in cystic fibrosis transmembrane conductance regulator (CFTR) facilitate interpretation of genotype-phenotype relationships. Hum Mutat. 2008;29:1364–72. https://doi.org/10.1002/humu.20866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gu Y, Harley ITW, Henderson LB, Aronow BJ, Vietor I, Huber LA, et al. Identification of IFRD1 as a modifier gene for cystic fibrosis lung disease. Nature. 2009;458:1039–42. https://doi.org/10.1038/nature07811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Corvol H, Blackman SM, Boëlle P-Y, Gallins PJ, Pace RG, Stonebraker JR, et al. Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat Commun. 2015;6:8382. https://doi.org/10.1038/ncomms9382.

    Article  CAS  PubMed  Google Scholar 

  58. Blackman SM, Commander CW, Watson C, Arcara KM, Strug LJ, Stonebraker JR, et al. Genetic modifiers of cystic fibrosis–related diabetes. Diabetes. 2013;62:3627–35. https://doi.org/10.2337/db13-0510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Drumm ML, Konstan MW, Schluchter MD, Handler A, Pace R, Zou F, et al. Genetic modifiers of lung disease in cystic fibrosis. 2009; https://doi.org/10.1056/NEJMoa051469.

  60. Davies JC, Cunningham S, Harris WT, Lapey A, Regelmann WE, Sawicki GS, et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2–5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med. 2016;4:107–15. https://doi.org/10.1016/S2213-2600(15)00545-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cutting GR. Modifier genes in Mendelian disorders: the example of cystic fibrosis. Ann N Y Acad Sci. 2010;1214:57–69. https://doi.org/10.1111/j.1749-6632.2010.05879.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry R. Cutting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, S.T., Cutting, G.R. (2020). Molecular Genetics of Cystic Fibrosis. In: Davis, S., Rosenfeld, M., Chmiel, J. (eds) Cystic Fibrosis. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-42382-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42382-7_23

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-42381-0

  • Online ISBN: 978-3-030-42382-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics