Skip to main content
Log in

Genetic analysis of two OsLpa1-like genes in Arabidopsis reveals that only one is required for wild-type seed phytic acid levels

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phytic acid (inositol-1,2,3,4,5,6-hexakisphosphate or InsP6) is the primary storage form of phosphorus in plant seeds. The rice OsLpa1 encodes a novel protein required for wild-type levels of seed InsP6 and was identified from a low phytic acid (lpa) mutant exhibiting a 45–50% reduction in seed InsP6. OsLpa1 is highly conserved in plants and Arabidopsis contains two OsLpa1-like genes, At3g45090 and At5g60760. Analysis of homozygous T-DNA insertion mutants of At5g60760 revealed significantly reduced levels of seed InsP6 while no changes were observed in seeds of At3g45090 mutants. A double knockout mutant of At5g60760 and At3g45090 was created and its seed InsP6 content was similar to that of the At5g60760 mutant indicating that At3g45090 does not provide functional redundancy. OsLpa1 was confirmed to be the ortholog of At5g60760 by complementation of a knockout mutant with a cDNA clone corresponding to the largest of three alternative transcripts of OsLpa1. The spatial and temporal expression of At5g60760 during seed development is consistent with its involvement in seed InsP6 biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

At :

Arabidopsis thaliana

BLASTp:

Basic local alignment search tool protein–protein

cDNA:

Complementary deoxyribonucleic acid

DAF:

Days after fertilization

GADPH:

Glyceraldehyde 3-phosphate dehydrogenase

GUS:

β-Glucuronidase

HPIC:

High-performance ion chromatography

InsP:

Inositol (poly)phosphate

lpa :

Low phytic acid

Os :

Oryza sativa

P:

Phosphorus

Pi:

Inorganic phosphate

RT-PCR:

Reverse transcription-polymerase chain reaction

SAIL:

Syngenta Arabidopsis Insertion Lines

SALK:

Salk Institute

T-DNA:

Transfer DNA

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Brearley CA, Hanke DE (1996a) Inositol phosphates in the duckweed Spirodela polyrhiza L. Biochem J 314:215–225

    CAS  PubMed  Google Scholar 

  • Brearley CA, Hanke DE (1996b) Metabolic evidence for the order of addition of individual phosphate esters in the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L. Biochem J 314:227–233

    CAS  PubMed  Google Scholar 

  • Brinch-Pedersen H, Sørensen LD, Holm PB (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7:118–125

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1980) Inositolhexakisphosphates. In: Cosgrove DJ (ed) Inositol Phosphates. Their Chemistry Biochemistry and Physiology. Elsevier, The Netherlands, pp 26–43

    Google Scholar 

  • Cromwell GL, Coffey RD (1991) Phosphorus—a key essential nutrient yet a possible major pollutant—its central role in animal nutrition. In: Lyons TP (ed) Biotechnology in the Feed Industry. Alltech Publications, Nicholasville KY, pp 133–145

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Reptr 1:19–21

    Article  CAS  Google Scholar 

  • Fileppi M, Galasso I, Tagliabue G, Daminati MG, Campion B, Doria E, Sparvoli F (2010) Characterisation of structural genes involved in phytic acid biosynthesis in common bean (Phaseolus vulgaris L.). Mol Breed 25:453–470

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Josefsen L, Bohn L, Sørensen MB, Rasmussen SK (2007) Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily. Gene 397:114–125

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Andaya C, Goyal S, Tai T (2008) The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet 117:769–779

    Article  CAS  PubMed  Google Scholar 

  • Larson SR, Rutger JN, Young KA, Raboy V (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci 40:1397–1405

    Article  CAS  Google Scholar 

  • Lehmacher A, Hensel R (1994) Cloning sequencing and expression of the gene encoding 2-phosphoglycerate kinase from Methanothermus fervidus. Mol Gen Genet 242:163–168

    Article  CAS  PubMed  Google Scholar 

  • Leipe DD, Koonin EV, Aravind L (2003) Evolution and classification of P-loop kinases and related proteins. J Mol Biol 333:781–815

    Article  CAS  PubMed  Google Scholar 

  • Lott J, Greenwood J, Batten G (1995) Mechanisms and regulation of mineral nutrient storage during seed development. In: Kigel J, Galili G (eds) Seed Development and Germination. Marcel Dekker, New York, pp 215–233

    Google Scholar 

  • Majumder A, Biswas B (1973) Metabolism of inositol phosphates part V—biosynthesis of inositol phosphates during ripening of mung bean (Phaseolus aureus) seeds. Indian J Exp Biol 11:120–123

    CAS  Google Scholar 

  • Mitsuhashi N, Ohnishi M, Sekiguchi Y, Kwon YU, Chang YT, Chung SK, Inoue Y, Reid RJ, Yagisawa H, Mimura T (2005) Phytic acid synthesis and vacuolar accumulation in suspension-cultured cells of Catharanthus roseus induced by high concentration of inorganic phosphate and cations. Plant Physiol 138:1607–1614

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi N, Kondo M, Nakaune S, Ohnishi M, Hayashi M, Hara-Nishimura I, Richardson A, Fukaki H, Nishimura M, Mimura T (2008) Localization of myo-inositol-1-phosphate synthase to the endosperm in developing seeds of Arabidopsis. J Exp Bot 59:3069–3076

    Article  CAS  PubMed  Google Scholar 

  • Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring JK, Brearley C, Martinoia E (2009) The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284:33614–33622

    Article  CAS  PubMed  Google Scholar 

  • Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029

    Article  CAS  PubMed  Google Scholar 

  • Raboy V (1997) Accumulation and storage of phosphate and minerals. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic Publishers, Dordrecht, pp 441–477

    Google Scholar 

  • Raboy V (2001) Seeds for a better future: low phytate grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    Article  CAS  PubMed  Google Scholar 

  • Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochem 64:1033–1043

    Article  CAS  Google Scholar 

  • Raboy V (2007) The ABCs of low-phytate crops. Nat Biotech 25:874–875

    Article  CAS  Google Scholar 

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PPN, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1–1 and low phytic acid 2–1. Plant Physiol 124:355–368

    Article  CAS  PubMed  Google Scholar 

  • Reddy NR, Sathe SK (2002) Food phytates. CRC Press, Boca Raton

    Google Scholar 

  • Saiardi A, Caffrey JJ, Snyder SH, Shears SB (2000) Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett 468:28–32

    Article  CAS  PubMed  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  CAS  PubMed  Google Scholar 

  • Shears SB (2004) How versatile are inositol phosphate kinases? Biochem J 377:265–280

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang H, Wu Y, Hazebroek J, Meeley RB, Ertl DS (2003) The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131:507–515

    Article  CAS  PubMed  Google Scholar 

  • Shi JR, Wang HY, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42:708–719

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotech 25:930–937

    Article  CAS  Google Scholar 

  • Stephens LR, Irvine RF (1990) Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium. Nature 346:580–583

    Article  CAS  PubMed  Google Scholar 

  • Stevenson-Paulik J, Odom AR, York JD (2002) Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J Biol Chem 277:42711–42718

    Article  CAS  PubMed  Google Scholar 

  • Stevenson-Paulik J, Bastidas RJ, Chiou S-T, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci USA 102:12612–12617

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Gene 405:55–64

    Article  CAS  PubMed  Google Scholar 

  • Sweetman D, Johnson S, Caddick SEK, Hanke DE, Brearley CA (2006) Characterization of an Arabidopsis inositol 1,3,4,5,6-pentakisphosphate 2-kinase (AtIPK1). Biochem J 394:95–103

    Article  CAS  PubMed  Google Scholar 

  • Wilson MP, Majerus PW (1997) Characterization of a cDNA encoding Arabidopsis thaliana inositol 1,3,4-trisphosphate 5/6-kinase. Biochem Biophys Res Comm 232:678–681

    Article  CAS  PubMed  Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    Article  CAS  PubMed  Google Scholar 

  • Zhao HJ, Liu QL, Ren XL, Wu DX, Shu QY (2008) Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Mol Breed 22:603–612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by USDA Agricultural Research Service CRIS Project 5306-21000-016/017-00D (T.H.T.) and National Research Initiative Competitive Grant 2005-35301-15708 from the USDA Cooperative State Research, Education, and Extension Service (T.H.T.). We are thankful to the UC Davis DANR Analytical Lab for assistance with HPIC analysis and to Victor Raboy, Cynthia Andaya, and Erin Easlon for critical reading of the manuscript and helpful suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Tai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SI., Tai, T.H. Genetic analysis of two OsLpa1-like genes in Arabidopsis reveals that only one is required for wild-type seed phytic acid levels. Planta 232, 1241–1250 (2010). https://doi.org/10.1007/s00425-010-1243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1243-5

Keywords

Navigation