Skip to main content
Log in

The B2 domain of VIVIPAROUS1 is bi-functional and regulates nuclear localization and transactivation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The transcriptional regulator VIVIPAROUS1 (VP1) is composed of four functional domains that control different aspects of gene expression during seed development. The B2 domain is required for its role as a transcriptional activator, functioning at the site of transcription and/or for its transport into the nucleus. Previous work showed that the B2 domain was required for transactivation of the Em promoter. We demonstrate that VP1::GFP localizes to the nucleus of barley (Hordeum vulgare) aleurone cells, but when B2 is deleted, nuclear accumulation is lost. However, the B2 domain itself is not sufficient for nuclear localization of GFP::GUS. Using point mutagenesis on the putative NLS within B2, we show that the VP1::GFP still accumulates in the nucleus. Utilizing a comparative approach, through the alignment of B2 domains from various VP1/ABI3 proteins, oincluding the ABI3 orthologs from Physcomitrella patens, revealed the involvement of other conserved amino acids. Mutating VP1 at the conserved threonine on the N-terminal side of the putative NLS and at a conserved arginine-glutamine-arginine sequence on the C-terminal side prevented nuclear localization of VP1. A single amino acid change, from alanine to threonine, within this NLS found in the Arabidopsis abi3-7 mutant prevents transcription of AtEm1 and AtEm6 in vivo. We show that this same mutation in VP1 prevents transactivation of the Em-GUS reporter in barley aleurone but does not interfere with nuclear localization. Our data demonstrate that the B2 domain of VP1 is bi-functional in nature regulating both nuclear localization and transactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABI3:

Abscisic acid insensitive 3

ABI5:

Abscisic acid insensitive 5

GFP:

Green fluorescent protein

GUS:

β-Glucuronidase

LEA:

Late embryogenesis abundant

LUC:

Luciferase

NLS:

Nuclear localization signal

VP1:

Viviparous 1

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133:470–474

    Article  PubMed  CAS  Google Scholar 

  • Bies-Etheve N, da Silva Conceicao A, Giraudat J, Koornneef M, Leon-Kloosterziel K, Valon C, Delseny M (1999) Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation. Plant Mol Biol 40:1045–1054

    Article  PubMed  CAS  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Bobb AJ, Eiben HG, Bustos MM (1995) PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters. Plant J 8:331–343

    Article  PubMed  CAS  Google Scholar 

  • Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75

    Article  PubMed  CAS  Google Scholar 

  • Bruce WB, Christensen AH, Klein T, Fromm M, Quail PH (1989) Photoregulation of a phytochrome gene promoter from oat transferred into rice by particle bombardment. Proc Natl Acad Sci USA 86:9692–9696

    Article  PubMed  CAS  Google Scholar 

  • Chandler JW, Bartels D (1997) Structure and function of the vp1 gene homologue from the resurrection plant Craterostigma plantagineum Hochst. Mol Gen Genet 256:539–546

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Cokol M, Nair R, Rost B (2000) Finding nuclear localization signals. EMBO Rep 1:411–415

    Article  PubMed  CAS  Google Scholar 

  • Dingwall C, Sharnick SV, Laskey RA (1982) A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell 30:449–458

    Article  PubMed  CAS  Google Scholar 

  • Dworetzky SI, Feldherr CM (1988) Translocation of RNA-coated gold particles through the nuclear pores of oocytes. J Cell Biol 106:575–584

    Article  PubMed  CAS  Google Scholar 

  • Ezcurra I, Wycliffe P, Nehlin L, Ellerstrom M, Rask L (2000) Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with a RY/G-box. Plant J 24:57–66

    Article  PubMed  CAS  Google Scholar 

  • Footitt S, Ingouff M, Clapham D, von Arnold S (2003) Expression of the viviparous 1 (Pavp1) and p34cdc2 protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst). J Exp Bot 54:1711–1719

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Terada T, Hamasuna ST (1994) Sequence and functional analyses of the rice gene homologous to the maize Vp1. Plant Mol Biol 24:805–810

    Article  PubMed  CAS  Google Scholar 

  • Hill A, Nantel A, Rock CD, Quatrano RS (1996) A conserved domain of the viviparous-1 gene product enhances the DNA binding activity of the bZIP protein EmBP-1 and other transcription factors. J Biol Chem 271:3366–3374

    Article  PubMed  CAS  Google Scholar 

  • Knight CD, Sehgal A, Atwal K, Wallace JC, Cove DJ, Coates D, Quatrano RS, Bahadur S, Stockley PG, Cuming AC (1995) Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7:499–506

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    Article  CAS  Google Scholar 

  • Lanahan MB, Ho TH, Rogers SW, Rogers JC (1992) A gibberellin response complex in cereal alpha-amylase gene promoters. Plant Cell 4:203–211

    Article  PubMed  CAS  Google Scholar 

  • Lazarova G, Zeng Y, Kermode AR (2002) Cloning and expression of an ABSCISIC ACID-INSENSITIVE 3 (ABI3) gene homologue of yellow-cedar (Chamaecyparis nootkatensis). J Exp Bot 53:1219–1221

    Article  PubMed  CAS  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  PubMed  CAS  Google Scholar 

  • Luerssen H, Kirik V, Herrmann P, Misera S (1998) FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15:755–764

    Article  PubMed  CAS  Google Scholar 

  • Marcotte WR Jr, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell 1:969–976

    Article  PubMed  CAS  Google Scholar 

  • Marella HH, Sakata Y, Quatrano RS (2006) Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens. Plant J 46:1032–1044

    Article  PubMed  CAS  Google Scholar 

  • McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66:895–905

    Article  PubMed  CAS  Google Scholar 

  • Nag R, Maity MK, Dasgupta M (2005) Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin. Plant Mol Biol 59:821–838

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Lynch TJ, Finkelstein RR (2001) Physical interactions between ABA response loci of Arabidopsis. Plant J 26:627–635

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Keith K, McCourt P, Naito S (1995) A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana. Development 121:629–636

    CAS  Google Scholar 

  • Nambara E, Hayama R, Tsuchiya Y, Nishimura M, Kawaide H, Kamiya Y, Naito S (2000) The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Dev Biol 220:412–423

    Article  PubMed  CAS  Google Scholar 

  • Parcy F, Valon C, Kohara A, Misera S, Giraudat J (1997) The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9:1265–1277

    Article  PubMed  CAS  Google Scholar 

  • Poon IK, Jans DA (2005) Regulation of nuclear transport: central role in development and transformation? Traffic 6:173–186

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Robertson D (1955) The genetics of vivipary in maize. Genetics 40:745–760

    PubMed  CAS  Google Scholar 

  • Rohde A, Kurup S, Holdsworth M (2000) ABI3 emerges from the seed. Trends Plant Sci 5:418–419

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W (2002) PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell 14:1885–1901

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Uknes SJ, Ho TH (1993) Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. J Biol Chem 268:23652–23660

    PubMed  CAS  Google Scholar 

  • Sheng T, Chi S, Zhang X, Xie J (2006) Regulation of Gli1 localization by the cAMP/protein kinase A signaling axis through a site near the nuclear localization signal. J Biol Chem 281:9–12

    Article  PubMed  CAS  Google Scholar 

  • Shiota H, Satoh R, Watabe K, Harada H, Kamada H (1998) C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiol 39:1184–1193

    PubMed  CAS  Google Scholar 

  • Suzuki M, Kao CY, McCarty DR (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9:799–807

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Kao CY, Cocciolone S, McCarty DR (2001) Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. Plant J 28:409–418

    Article  PubMed  CAS  Google Scholar 

  • Varagona MJ, Raikhel NV (1994) The basic domain in the bZIP regulatory protein Opaque2 serves two independent functions: DNA binding and nuclear localization. Plant J 5:207–214

    Article  PubMed  CAS  Google Scholar 

  • Varagona MJ, Schmidt RJ, Raikhel NV (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4:1213–1227

    Article  PubMed  CAS  Google Scholar 

  • Vasil V, Marcotte WR Jr, Rosenkrans L, Cocciolone SM, Vasil IK, Quatrano RS, McCarty DR (1995) Overlap of Viviparous1 (VP1) and abscisic acid response elements in the Em promoter: G-box elements are sufficient but not necessary for VP1 transactivation. Plant Cell 7:1511–1518

    Article  PubMed  CAS  Google Scholar 

  • Waltner JK, Peterson FC, Lytle BL, Volkman BF (2005) Structure of the B3 domain from Arabidopsis thaliana protein At1g16640. Protein Sci 14:2478–2483

    Article  PubMed  CAS  Google Scholar 

  • Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2004) Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16:3448–3459

    Article  PubMed  CAS  Google Scholar 

  • Zentella R, Yamauchi D, Ho TH (2002) Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14:2289–2301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tuan-hua David Ho and Dr. Jose Casaretto for providing the DNA constructs of Ubi-GFP and Ubi-LUC, and also for their technical assistance with the particle bombardment of barley aleurone cells. We thank Aihong Pan for her assistance. This research was supported by Washington University to R.S.Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph S. Quatrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marella, H.H., Quatrano, R.S. The B2 domain of VIVIPAROUS1 is bi-functional and regulates nuclear localization and transactivation. Planta 225, 863–872 (2007). https://doi.org/10.1007/s00425-006-0398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0398-6

Keywords

Navigation