Skip to main content

Advertisement

Log in

Voltage-gated calcium channels in chronic pain: emerging role of alternative splicing

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

N- and T-type voltage-gated calcium channels are key established players in chronic pain. Current work suggests that alternative splicing of these channels constitutes an important aspect in the investigation of their roles in the pathogenesis of chronic pain. Recent N-type channel studies describe a nociceptor-enriched alternatively spliced module responsible for voltage-independent G protein modulation and internalization, which is implicated in the control of distinct nociceptive pathways. On the contrary, although a large body of work has demonstrated that peripheral Cav3.2-encoded T-type currents are involved in several types of chronic pain, little is known with respect to the expression of numerous newly discovered splice variants in specific pain pathways. The elucidation of the new layers of molecular complexity uncovered in N- and T-type channel splice variants and their respective locations and roles in different pain pathways will allow for the development of better therapeutic strategies for the treatment of chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altier C, Zamponi GW (2004) Targeting Ca2+ channels to treat pain: T-type versus N-type. Trends Pharmacol Sci 25:465–470

    Article  PubMed  CAS  Google Scholar 

  2. Westenbroek RE, Hell JW, Warberm C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1A subunit. Neuron 9:1099–1115

    Article  PubMed  CAS  Google Scholar 

  3. Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15:6403–6418

    PubMed  CAS  Google Scholar 

  4. Bao J, Li JJ, Perl ER (1998) Differences in Ca2+ channels governing generation of miniature and evoked excitatory synaptic currents in spinal laminae I and II. J Neurosci 18:8740–8750

    PubMed  CAS  Google Scholar 

  5. Heinke B, Balzer E, Sandkuhler J (2004) Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons. Eur J Neurosci 19:103–111

    Article  PubMed  CAS  Google Scholar 

  6. Rycroft BK, Vikman KS, Christie MJ (2007) Inflammation reduces the contribution of N-type calcium channels to primary afferent synaptic transmission onto NK1 receptor-positive lamina I neurons in the rat dorsal horn. J Physiol 580:883–894

    Article  PubMed  CAS  Google Scholar 

  7. Chaplan SR, Pogrel JW, Yaksh TL (1994) Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. J Pharmacol Exp Ther 269:1117–1123

    PubMed  CAS  Google Scholar 

  8. Matthews EA, Dickenson AH (2001) Effects of spinally delivered N- and P-type voltage-dependent calcium channel antagonists on dorsal horn neuronal responses in a rat model of neuropathy. Pain 92:235–246

    Article  PubMed  CAS  Google Scholar 

  9. Hatakeyama S, Wakamori M, Ino M, Miyamoto N, Takahashi E, Yoshinaga T, Sawada K, Imoto K, Tanaka I, Yoshizawa T, Nishizawa Y, Mori Y, Niidome T, Shoji S (2001) Differential nociceptive responses in mice lacking the alpha(1B) subunit of N-type Ca(2+) channels. Neuroreport 12:2423–2427

    Article  PubMed  CAS  Google Scholar 

  10. Kim C, Jun K, Lee T, Kim SS, McEnery MW, Chin H, Kim HL, Park JM, Kim DK, Jung SJ, Kim J, Shin HS (2001) Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel. Mol Cell Neurosci 18:235–245

    Article  PubMed  CAS  Google Scholar 

  11. Saegusa H, Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, Han W, Toriyama H, Tanabe T (2001) Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 20:2349–2356

    Article  PubMed  CAS  Google Scholar 

  12. Bell TJ, Thaler C, Castiglioni AJ, Helton TD, Lipscombe D (2004) Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 41:127–138

    Article  PubMed  CAS  Google Scholar 

  13. Castiglioni AJ, Raingo J, Lipscombe D (2006) Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J Physiol 576:119–134

    Article  PubMed  CAS  Google Scholar 

  14. Altier C, Dale CS, Kisilevsky AE, Chapman K, Castiglioni AJ, Matthews EA, Evans RM, Dickenson AH, Lipscombe D, Vergnolle N, Zamponi GW (2007) Differential role of N-type calcium channel splice isoforms in pain. J Neurosci 27:6363–6373

    Article  PubMed  CAS  Google Scholar 

  15. Diverse-Pierluissi M, Dunlap K (1995) Interaction of convergent pathways that inhibit N-type calcium currents in sensory neurons. Neuroscience 65:477–483

    Article  PubMed  CAS  Google Scholar 

  16. Luebke JI, Dunlap K (1994) Sensory neuron N-type calcium currents are inhibited by both voltage-dependent and -independent mechanisms. Pflugers Arch 428:499–507

    Article  PubMed  CAS  Google Scholar 

  17. Shapiro MS, Hille B (1993) Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways. Neuron 10:11–20

    Article  PubMed  CAS  Google Scholar 

  18. Agler HL, Evans J, Tay LH, Anderson MJ, Colecraft HM, Yue DT (2005) G Protein-gated inhibitory module of N-type (CaV2.2) Ca2+ channels. Neuron 46:891–904

    Article  PubMed  CAS  Google Scholar 

  19. De Waard M, Liu H, Walker D, Scott VE, Gurnett CA, Campbell KP (1997) Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 385:446–450 (see comments)

    Article  PubMed  Google Scholar 

  20. Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 385:442–446 (see comments)

    Article  PubMed  CAS  Google Scholar 

  21. Delmas P, Abogadie FC, Dayrell M, Haley JE, Milligan G, Caulfield MP, Brown DA, Buckley NJ (1998) G-proteins and G-protein subunits mediating cholinergic inhibition of N-type calcium currents in sympathetic neurons. Eur J Neurosci. 10:1654–1666

    Article  PubMed  CAS  Google Scholar 

  22. Kammermeier PJ, Ruiz-Velasco V, Ikeda SR (2000) A voltage-independent calcium current inhibitory pathway activated by muscarinic agonists in rat sympathetic neurons requires both Galpha q/11 and Gbeta gamma. J Neurosci 20:5623–5629

    PubMed  CAS  Google Scholar 

  23. Diverse-Pierluissi M, Remmers AE, Neubig RR, Dunlap K (1997) Novel form of crosstalk between G protein and tyrosine kinase pathways. Proc Natl Acad Sci USA 94:5417–5421

    Article  PubMed  CAS  Google Scholar 

  24. Schiff ML, Siderovski DP, Jordan JD, Brothers G, Snow B, De Vries L, Ortiz DF, Diverse-Pierluissi M (2000) Tyrosine-kinase-dependent recruitment of RGS12 to the N-type calcium channel. Nature. 408:723–727

    Article  PubMed  CAS  Google Scholar 

  25. Raingo J, Castiglioni AJ, Lipscombe D (2007) Alternative splicing controls G protein-dependent inhibition of N-type calcium channels in nociceptors. Nat Neurosci 10:285–292

    Article  PubMed  CAS  Google Scholar 

  26. Luebke JI, Dunlap K (1994) Sensory neuron N-type calcium currents are inhibited by both voltage-dependent and -independent mechanisms. Pflugers Arch 428:499–507

    Article  PubMed  CAS  Google Scholar 

  27. Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    Article  PubMed  CAS  Google Scholar 

  28. Roche KW, Standley S, McCallum J, Dune LC, Ehlers MD, Wenthold RJ (2001) Molecular determinants of NMDA receptor internalization. Nat Neurosci 4:794–802

    Article  PubMed  CAS  Google Scholar 

  29. Scott DB, Michailidis I, Mu Y, Logothetis D, Ehlers MD (2004) Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J Neurosci 24:7096–7109

    Article  PubMed  CAS  Google Scholar 

  30. Altier C, Khosravani H, Evans RM, Hameed S, Peloquin JB, Vartian BA, Chen L, Beedle AM, Ferguson SS, Mezghrani A, Dubel SJ, Bourinet E, McRory JE, Zamponi GW (2006) ORL1 receptor-mediated internalization of N-type calcium channels. Nat Neurosci 9:31–40

    Article  PubMed  CAS  Google Scholar 

  31. Beedle AM, McRory JE, Poirot O, Doering CJ, Altier C, Barrere C, Hamid J, Nargeot J, Bourinet E, Zamponi GW (2004) Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 7:118–125

    Article  PubMed  CAS  Google Scholar 

  32. Briscini L, Corradini L, Ongini E, Bertorelli R (2002) Up-regulation of ORL-1 receptors in spinal tissue of allodynic rats after sciatic nerve injury. Eur J Pharmacol. 447:59–65

    Article  PubMed  CAS  Google Scholar 

  33. Chen Y, Sommer C (2006) Nociceptin and its receptor in rat dorsal root ganglion neurons in neuropathic and inflammatory pain models: implications on pain processing. J Peripher Nerv Syst 11:232–240

    Article  PubMed  CAS  Google Scholar 

  34. Ma F, Xie H, Dong ZQ, Wang YQ, Wu GC (2005) Expression of ORL1 mRNA in some brain nuclei in neuropathic pain rats. Brain Res 1043:214–217

    Article  PubMed  CAS  Google Scholar 

  35. Ueda H, Inoue M, Takeshima H, Iwasawa Y (2000) Enhanced spinal nociceptin receptor expression develops morphine tolerance and dependence. J Neurosci 20:7640–7647

    PubMed  CAS  Google Scholar 

  36. Andoh T, Itoh M, Kuraishi Y (1997) Nociceptin gene expression in rat dorsal root ganglia induced by peripheral inflammation. Neuroreport 8:2793–2796

    Article  PubMed  CAS  Google Scholar 

  37. Tombler E, Cabanilla NJ, Carman P, Permaul N, Hall JJ, Richman RW, Lee J, Rodriguez J, Felsenfeld DP, Hennigan RF, Diverse-Pierluissi MA (2006) G protein-induced trafficking of voltage-dependent calcium channels. J Biol Chem 281:1827–1839

    Article  PubMed  CAS  Google Scholar 

  38. Wu ZZ, Chen SR, Pan HL (2006) Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons. Neuroscience 141:407–419

    Article  PubMed  CAS  Google Scholar 

  39. Nilius B, Talavera K, Verkhratsky A (2006) T-type calcium channels: the never ending story. Cell Calcium. 40:81–88

    Article  PubMed  CAS  Google Scholar 

  40. Perez-Reyes E (2006) Molecular characterization of T-type calcium channels. Cell Calcium 40:89–96

    Article  PubMed  CAS  Google Scholar 

  41. Perez-Reyes E, Lory P (2006) Molecular biology of T-type calcium channels. CNS Neurol Disord Drug Targets 5:605–609

    Article  PubMed  CAS  Google Scholar 

  42. Pape HC, Munsch T, Budde T (2004) Novel vistas of calcium-mediated signalling in the thalamus. Pflugers Arch 448:131–138

    Article  PubMed  CAS  Google Scholar 

  43. Huguenard JR (1996) Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 58:329–348

    Article  PubMed  CAS  Google Scholar 

  44. Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664

    Article  PubMed  CAS  Google Scholar 

  45. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161

    PubMed  CAS  Google Scholar 

  46. Coste B, Crest M, Delmas P (2007) Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J Gen Physiol 129:57–77

    Article  PubMed  CAS  Google Scholar 

  47. Scroggs RS, Fox AP (1992) Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J Physiol 445:639–658

    PubMed  CAS  Google Scholar 

  48. Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237–1240

    Article  PubMed  CAS  Google Scholar 

  49. Kim D, Park D, Choi S, Lee S, Sun M, Kim C, Shin HS (2003) Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 302:117–119

    Article  PubMed  CAS  Google Scholar 

  50. Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24:315–324

    Article  PubMed  CAS  Google Scholar 

  51. Lambert RC, McKenna F, Maulet Y, Talley EM, Bayliss DA, Cribbs LL, Lee JH, Perez-Reyes E, Feltz A (1998) Low-voltage-activated Ca2+ currents are generated by members of the CavT subunit family (alpha1G/H) in rat primary sensory neurons. J Neurosci 18:8605–8613

    PubMed  CAS  Google Scholar 

  52. Shin JB, Martinez-Salgado C, Heppenstall PA, Lewin GR (2003) A T-type calcium channel required for normal function of a mammalian mechanoreceptor. Nat Neurosci 6:724–730

    Article  PubMed  CAS  Google Scholar 

  53. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911

    PubMed  CAS  Google Scholar 

  54. Dogrul A, Gardell LR, Ossipov MH, Tulunay FC, Lai J, Porreca F (2003) Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 105:159–168

    Article  PubMed  CAS  Google Scholar 

  55. Todorovic SM, Meyenburg A, Jevtovic-Todorovic V (2002) Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res. 951:336–340

    Article  PubMed  CAS  Google Scholar 

  56. Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, Park J, Chen CC, Campbell KP, Shin HS (2007) Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav 6:425–431

    Article  PubMed  CAS  Google Scholar 

  57. Zhong X, Liu JR, Kyle JW, Hanck DA, Agnew WS (2006) A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Genet 15:1497–1512

    Article  PubMed  CAS  Google Scholar 

  58. Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, Bayliss DA, Jevtovic-Todorovic V, Todorovic SM (2007) Cell-specific alterations of t-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 27:3305–3316

    Article  PubMed  CAS  Google Scholar 

  59. Joksovic PM, Nelson MT, Jevtovic-Todorovic V, Patel MK, Perez-Reyes E, Campbell KP, Chen CC, Todorovic SM (2006) CaV3.2 is the major molecular substrate for redox regulation of T-type Ca2+ channels in the rat and mouse thalamus. J Physiol 574:415–430

    Article  PubMed  CAS  Google Scholar 

  60. Baccei ML, Kocsis JD (2000) Voltage-gated calcium currents in axotomized adult rat cutaneous afferent neurons. J Neurophysiol 83:2227–2238

    PubMed  CAS  Google Scholar 

  61. Fuchs A, Rigaud M, Sarantopoulos CD, Filip P, Hogan QH (2007) Contribution of calcium channel subtypes to the intracellular calcium signal in sensory neurons: the effect of injury. Anesthesiology 107:117–127

    Article  PubMed  CAS  Google Scholar 

  62. Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P (2001) Alternatively spliced alpha(1G) (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J 80:1238–1250

    Article  PubMed  CAS  Google Scholar 

  63. Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW (2004) Expression of T-type calcium channel splice variants in human glioma. Glia 48:112–119

    Article  PubMed  Google Scholar 

  64. Mittman S, Guo J, Agnew WS (1999) Structure and alternative splicing of the gene encoding [alpha]1G, a human brain T calcium channel [alpha]1 subunit. Neurosci Lett 274:143–146

    Article  PubMed  CAS  Google Scholar 

  65. Murbartian J, Arias JM, Perez-Reyes E (2004) Functional impact of alternative splicing of human T-type Cav3.3 calcium channels. J Neurophysiol 92:3399–3407

    Article  PubMed  CAS  Google Scholar 

  66. Talavera K, Nilius B (2006) Biophysics and structure-function relationship of T-type Ca2+ channels. Cell Calcium 40:97–114

    Article  PubMed  CAS  Google Scholar 

  67. Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ (2003) T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 424:209–213

    Article  PubMed  CAS  Google Scholar 

  68. Wolfe JT, Wang H, Perez-Reyes E, Barrett PQ (2002) Stimulation of recombinant Ca(v)3.2, T-type, Ca(2+) channel currents by CaMKIIgamma(C). J Physiol 538:343–355

    Article  PubMed  CAS  Google Scholar 

  69. Bian F, Li Z, Offord J, Davis MD, McCormick J, Taylor CP, Walker LC (2006) Calcium channel alpha2-delta type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdala, and spinal cord: An ex vivo autoradiographic study in alpha2-delta type 1 genetically modified mice. Brain Res 1075:68–80

    Article  PubMed  CAS  Google Scholar 

  70. Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su T-Z, Bramwell S, Corradini L, England S, Winks J, Kinloch RA, Hendrich J, Dolphin AC, Webb T, Williams D (2006) Identification of the {alpha}2-{delta}-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci USA 103:17537–17542

    Article  PubMed  CAS  Google Scholar 

  71. Gee NS, Brown JP, Dissanayake VUK, Offord J, Thurlow R, Woodruff GN (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha(2)[IMAGE] subunit of a calcium channel. J Biol Chem 271:5768–5776

    Article  PubMed  CAS  Google Scholar 

  72. Dubel SJ, Altier C, Chaumont S, Lory P, Bourinet E, Nargeot J (2004) Plasma membrane expression of T-type calcium channel {alpha}1 subunits is modulated by high voltage-activated auxiliary subunits. J Biol Chem 279:29263–29269

    Article  PubMed  CAS  Google Scholar 

  73. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D (2006) Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 10:287–333

    Article  PubMed  Google Scholar 

  74. McGivern JG (2006) Targeting N-type and T-type calcium channels for the treatment of pain. Drug Discov Today 11:245–253

    Article  PubMed  CAS  Google Scholar 

  75. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

LAS is supported by a Marie Curie International Incoming Postdoctoral Fellowship. EB is supported by research grants from the Agence Nationale de la Recherche (ANR-05-NEUR-031-01), the ARC-INCa-2006, the Institut UPSA de la Douleur, the Association Française contre les Myopathies (AFM), and the Fédération pour la Recherche sur le Cerveau (FRC, équipement 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Bourinet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swayne, L.A., Bourinet, E. Voltage-gated calcium channels in chronic pain: emerging role of alternative splicing. Pflugers Arch - Eur J Physiol 456, 459–466 (2008). https://doi.org/10.1007/s00424-007-0390-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0390-4

Keywords

Navigation