Skip to main content
Log in

Novel vistas of calcium-mediated signalling in the thalamus

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Traditionally, the role of calcium ions (Ca2+) in thalamic neurons has been viewed as that of electrical charge carriers. Recent experimental findings in thalamic cells have only begun to unravel a highly complex Ca2+ signalling network that exploits extra- and intracellular Ca2+ sources. In thalamocortical relay neurons, interactions between T-type Ca2+ channel activation, Ca2+-dependent regulation of adenylyl cyclase activity and the hyperpolarization-activated cation current (I h) regulate oscillatory burst firing during periods of sleep and generalized epilepsy, while a functional triad between Ca2+ influx through high-voltage-activated (most likely L-type) Ca2+ channels, Ca2+-induced Ca2+ release via ryanodine receptors (RyRs) and a repolarizing mechanism (possibly via K+ channels of the BKCa type) supports tonic spike firing as required during wakefulness. The mechanisms seem to be located mostly at dendritic and somatic sites, respectively. One functional compartment involving local GABAergic interneurons in certain thalamic relay nuclei is the glomerulus, in which the dendritic release of GABA is regulated by Ca2+ influx via canonical transient receptor potential channels (TRPC), thereby presumably enabling transmitters of extrathalamic input systems that are coupled to phospholipase C (PLC)-activating receptors to control feed-forward inhibition in the thalamus. Functional interplay between T-type Ca2+ channels in dendrites and the A-type K+ current controls burst firing, contributing to the range of oscillatory activity observed in these interneurons. GABAergic neurons in the reticular thalamic (RT) nucleus recruit a specific set of Ca2+-dependent mechanisms for the generation of rhythmic burst firing, of which a particular T-type Ca2+ channel in the dendritic membrane, the Ca2+-dependent activation of non-specific cation channels (I CAN) and of K+ channels (SKCa type) are key players. Glial Ca2+ signalling in the thalamus appears to be a basic mechanism of the dynamic and integrated exchange of information between glial cells and neurons. The conclusion from these observations is that a localized calcium signalling network exists in all neuronal and probably also glial cell types in the thalamus and that this network is dedicated to the precise regulation of the functional mode of the thalamus during various behavioural states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Achermann P, Borbely AA (1997) Low-frequency (1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81:213–222

    Article  CAS  PubMed  Google Scholar 

  2. Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673

    CAS  PubMed  Google Scholar 

  3. Bal T, McCormick DA (1993) Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol (Lond) 468:669–691

  4. Bal T, Debay D, Destexhe A (2000) Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. J Neurosci 20:7478–7488

    CAS  PubMed  Google Scholar 

  5. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    CAS  PubMed  Google Scholar 

  6. Biella G, Meis S, Pape H-C (2001) Modulation of a Ca2+-dependent K+-current by intracellular cAMP in rat thalamocortical relay neurons. Thalamus Relat Syst 1:157–167

    Article  CAS  Google Scholar 

  7. Blumenfeld H, McCormick DA (2000) Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J Neurosci 20:5153–5162

    CAS  PubMed  Google Scholar 

  8. Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202:1203–1206

    CAS  PubMed  Google Scholar 

  9. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    CAS  PubMed  Google Scholar 

  10. Budde T, Biella G, Munsch T, Pape H-C (1997) Lack of regulation by intracellular Ca2+ of the hyperpolarization-activated cation current in rat thalamic neurons. J. Physiol (Lond) 503:79–85

  11. Budde T, Munsch T, Pape H-C (1998) Distribution of L-type calcium channels in rat thalamic neurons. Eur J Neurosci 10:586–597

    Article  CAS  PubMed  Google Scholar 

  12. Budde T, Sieg F, Braunewell KH, Gundelfinger ED, Pape H-C (2000) Ca2+-induced Ca2+ release supports the relay mode of activity in thalamocortical cells. Neuron 26:483–492

    CAS  PubMed  Google Scholar 

  13. Budde T, Meuth S, Pape H-C (2002) Calcium-dependent inactivation of neuronal calcium channels. Nat Rev Neurosci 3:873–883

    Article  CAS  PubMed  Google Scholar 

  14. Catterall WA (1998) Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24:307–323

    CAS  PubMed  Google Scholar 

  15. Chavis P, Fagni L, Lansman JB, Bockaert J (1996) Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 382:719–722

    Article  CAS  PubMed  Google Scholar 

  16. Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396

    Article  CAS  PubMed  Google Scholar 

  17. Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ (2003) Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89:2707–2725

    PubMed  Google Scholar 

  18. Contreras D, Steriade M (1996) Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. J Physiol (Lond) 490:159–179

  19. Cox CL, Sherman SM (2000) Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron 27:597–610

    CAS  PubMed  Google Scholar 

  20. Cox CL, Zhou Q, Sherman SM (1998) Glutamate locally activates dendritic outputs of thalamic interneurons. Nature 394:478–482

    Article  CAS  PubMed  Google Scholar 

  21. Curro Dossi RC, Nunez A, Steriade M (1992) Electrophysiology of a slow (0.5-4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J. Physiol (Lond) 447:215–234

  22. Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996) In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16:169–185

    CAS  PubMed  Google Scholar 

  23. Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18:3574–3588

    CAS  PubMed  Google Scholar 

  24. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C14

    CAS  PubMed  Google Scholar 

  25. Formenti A, De Simoni A, Arrigoni E, Martina M (2001) Changes in extracellular Ca2+ can affect the pattern of discharge in rat thalamic neurons. J Physiol (Lond) 535:33–45

  26. Garaschuk O, Linn J, Eilers J, Konnerth A (2000) Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci 3:452–459

    Google Scholar 

  27. Godwin DW, Van Horn SC, Eriir A, Sesma M, Romano C, Sherman SM (1996) Ultrastructural localization suggests that retinal and cortical inputs access different metabotropic glutamate receptors in the lateral geniculate nucleus. J Neurosci 16:8181–8192

    CAS  PubMed  Google Scholar 

  28. Gutierrez C, Cox CL, Rinzel J, Sherman SM (2001) Dynamics of low-threshold spike activation in relay neurons of the cat lateral geniculate nucleus. J Neurosci 21:1022–1032

    CAS  PubMed  Google Scholar 

  29. Hartveit E, Heggelund P (1995) Brainstem modulation of signal transmission through the cat dorsal lateral geniculate nucleus. Exp Brain Res 103:372–384

    CAS  PubMed  Google Scholar 

  30. Haydon PG (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  CAS  PubMed  Google Scholar 

  31. Heizmann CW (1993) Calcium signaling in the brain. Acta Neurobiol Exp (Warsz) 53:15–23

    Google Scholar 

  32. Hofmann T, Schaefer M, Schultz G, Gudermann T (2000) Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J Mol Med 78:14–25

    Article  CAS  PubMed  Google Scholar 

  33. Hughes SW, Cope DW, Toth TI, Williams SR, Crunelli V (1999) All thalamocortical neurones possess a T-type Ca2+ “window” current that enables the expression of bistability-mediated activities. J Physiol (Lond) 517:805–815

  34. Huguenard JR (1996) Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 58:329–348

    CAS  PubMed  Google Scholar 

  35. Kammermeier PJ, Jones SW (1997) High-voltage-activated calcium currents in neurons acutely isolated from the ventrobasal nucleus of the rat thalamus. J Neurophysiol 77:465–475

    CAS  PubMed  Google Scholar 

  36. Kaplan E, Purpura K, Shapley RM (1987) Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J Physiol (Lond) 391:267–288

  37. Lee KH, McCormick DA (1997) Modulation of spindle oscillations by acetylcholine, cholecystokinin and 1S,3R-ACPD in the ferret lateral geniculate and perigeniculate nuclei in vitro. Neuroscience 77:335–350

    Article  CAS  PubMed  Google Scholar 

  38. Leresche N, Lightowler S, Soltesz I, Jassik-Gerschenfeld D, Crunelli V (1991) Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol (Lond) 441:155–174

  39. Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visual information in the cat. Nature 291:554–561

    Google Scholar 

  40. Llinas R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297:406–408

    CAS  PubMed  Google Scholar 

  41. Lo FS, Ziburkus J, Guido W (2002) Synaptic mechanisms regulating the activation of a Ca2+-mediated plateau potential in developing relay cells of the LGN. J Neurophysiol 87:1175–1185

    CAS  PubMed  Google Scholar 

  42. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591

    CAS  PubMed  Google Scholar 

  43. Lüth HJ, Winkelmann E, Celio MR (1993) Light- and electron microscopic localization of parvalbumin, calbindin D-28k and calretinin in the dorsal lateral geniculate nucleus of the rat. J Hirnforsch 34:47–56

    PubMed  Google Scholar 

  44. Lüthi A, McCormick DA (1998) H-current: properties of a neuronal and network pacemaker. Neuron 21:9–12

    CAS  PubMed  Google Scholar 

  45. Lüthi A, McCormick DA (1998) Periodicity of thalamic synchronized oscillations: the role of Ca2+-mediated upregulation of I h. Neuron 20:553–563

    PubMed  Google Scholar 

  46. Lüthi A, McCormick DA (1999) Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production. Nat Neurosci 2:634–641

    Article  PubMed  Google Scholar 

  47. Magee JC (1999) Dendritic I h normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2:508–514 (Erratum: p 848)

  48. Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181–190

    Article  CAS  PubMed  Google Scholar 

  49. McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    Article  CAS  PubMed  Google Scholar 

  50. McCormick DA, Pape H-C (1988) Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus. Nature 334:246–248

    Article  CAS  PubMed  Google Scholar 

  51. McCormick DA, Pape H-C (1990) Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. J Physiol (Lond) 431:319–342

  52. McCormick DA, Pape H-C (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol (Lond) 431:291–318

  53. Meuth S, Budde T, Pape H-C (2001) Differential control of high-voltage activated Ca2+ current components by a Ca2+-dependent inactivation mechanism in thalamic relay neurons. Thalamus Relat Syst 1:31–38

    Article  CAS  Google Scholar 

  54. Meuth S, Pape H-C, Budde T (2002) Modulation of Ca2+ currents in rat thalamocortical relay neurons by activity and phosphorylation. Eur J Neurosci 15:1603–1614

    Article  PubMed  Google Scholar 

  55. Mironov SL (1994) Metabotropic ATP receptor in hippocampal and thalamic neurones: pharmacology and modulation of Ca2+ mobilizing mechanisms. Neuropharmacology 33:1–13

    Article  CAS  PubMed  Google Scholar 

  56. Munsch T, Budde T, Pape H-C (1997) Voltage-activated intracellular calcium transients in thalamic relay cells and interneurons. Neuroreport 8:2411–2418

    CAS  PubMed  Google Scholar 

  57. Munsch T, Freichel M, Flockerzi V, Pape HC (2003) Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci USA 100:16065–16070

    Article  CAS  PubMed  Google Scholar 

  58. Nilius B (2003) From TRPs to SOCs, CCEs, and CRACs: consensus and controversies. Cell Calcium 33:293–298

    Article  CAS  PubMed  Google Scholar 

  59. Pape H-C (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    Google Scholar 

  60. Pape H-C, McCormick DA (1994) Electrophysiological and pharmacological properties of interneurons in the cat lateral geniculate nucleus. Neuroscience 68:1105–1125

    Article  Google Scholar 

  61. Pape H-C, Budde T, Mager R, Kisvarday Z (1994) Prevention of Ca2+-mediated action potentials in GABAergic local circuit neurons of the thalamus by a transient K+ current. J Physiol (Lond) 478:403–422

  62. Parri HR, Crunelli V (2001) Pacemaker calcium oscillations in thalamic astrocytes in situ. Neuroreport 12:3897–3900

    Article  CAS  PubMed  Google Scholar 

  63. Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4:803–812

    Article  CAS  PubMed  Google Scholar 

  64. Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21:477–484

    CAS  PubMed  Google Scholar 

  65. Pedroarena C, Llinas R (1997) Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. Proc Natl Acad Sci 94:724–728

    Article  CAS  PubMed  Google Scholar 

  66. Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367–1395

    CAS  PubMed  Google Scholar 

  67. Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic Press, San Diego

  68. Sieg F, Obst K, Gorba T, Riederer B, Pape H-C, Wahle P (1998) Postnatal expression pattern of calcium-binding proteins in organotypic thalamic cultures and in the dorsal thalamus in vivo. Brain Res Dev Brain Res 110:83–95

    Article  CAS  PubMed  Google Scholar 

  69. Sillito AM, Kemp JA (1983) The influence of GABAergic inhibitory processes on the receptive field structure of X and Y cells in cat dorsal lateral geniculate nucleus (dLGN). Brain Res 277:63–77

    Article  CAS  PubMed  Google Scholar 

  70. Single S, Haag J, Borst A (1997) Dendritic computation of direction selectivity and gain control in visual interneurons. J Neurosci 17:6023–6030

    CAS  PubMed  Google Scholar 

  71. Soltesz I, Lightowler S, Leresche N, Jassik-Gerschenfeld D, Pollard CE, Crunelli V (1991) Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J Physiol (Lond) 441:175–197

  72. Steriade M (1991) Alertness, quiet sleep, dreaming. Cereb Cortex 9:279–357

    Google Scholar 

  73. Steriade M (2001) Impact of network activities on neuronal properties in corticothalamic systems. J Neurophysiol 86:1–39

    CAS  PubMed  Google Scholar 

  74. Steriade M, Pare D, Hu B, Deschenes M (1990) The visual thalamocortical system and its modulation by the brain stem core. Prog Sens Physiol 10:1–124

    Google Scholar 

  75. Steriade M, Contreras D, Curro Dossi RC, Nunez A (1993) The slow (<1 Hz) oscillation in reticular thalamic and thalamocotical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 13:3284–3299

  76. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    CAS  PubMed  Google Scholar 

  77. Steriade M, Jones EG, McCormick DA (1997) Thalamus. Elsevier, Amsterdam

  78. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911

    CAS  PubMed  Google Scholar 

  79. Toth TI, Crunelli V (1997) Simulation of intermittent action potential firing in thalamocortical neurons. Neuroreport 8:2889–2892

    CAS  PubMed  Google Scholar 

  80. Vennekens R, Voets T, Bindels RJ, Droogmans G, Nilius B (2002) Current understanding of mammalian TRP homologues. Cell Calcium 31:253–264

    Article  CAS  PubMed  Google Scholar 

  81. Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307–1317

    CAS  PubMed  Google Scholar 

  82. Williams SR, Toth TI, Turner JP, Hughes SW, Crunelli V (1997) The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J Physiol (Lond) 505:689–705

  83. Yuste R, Peinado A, Katz LC (1992) Neuronal domains in developing neocortex. Science 257:665–669

    CAS  PubMed  Google Scholar 

  84. Zhou Q, Godwin DW, O’Malley DM, Adams PR (1997) Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relay cells. J Neurophysiol 77:2816–2825

    CAS  PubMed  Google Scholar 

  85. Zhu JJ, Lytton WW, Xue JT, Uhlrich DJ (1999) An intrinsic oscillation in interneurons of the rat lateral geniculate nucleus. J Neurophysiol 81:702–711

    CAS  PubMed  Google Scholar 

  86. Zhu JJ, Uhlrich DJ, Lytton WW (1999) Burst firing in identified rat geniculate interneurons. Neuroscience 91:1445–1460

    Article  CAS  PubMed  Google Scholar 

  87. Zhuravleva SO, Kostyuk PG, Shuba YM (2001) Subtypes of low voltage-activated Ca2+ channels in laterodorsal thalamic neurons: possible localization and physiological roles. Pflugers Arch 441:832–839

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Christian Pape.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pape, HC., Munsch, T. & Budde, T. Novel vistas of calcium-mediated signalling in the thalamus. Pflugers Arch - Eur J Physiol 448, 131–138 (2004). https://doi.org/10.1007/s00424-003-1234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1234-5

Keywords

Navigation