Skip to main content
Log in

Spatiotemporal distribution of heparan sulfate epitopes during murine cartilage growth plate development

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Heparan sulfate proteoglycans (HSPGs) are abundant in the pericellular matrix of both developing and mature cartilage. Increasing evidence suggests the action of numerous chondroregulatory molecules depends on HSPGs. In addition to specific functions attributed to their core protein, the complexity of heparan sulfate (HS) synthesis provides extraordinary structural and functional heterogeneity. Understanding the interactions of chondroregulatory molecules with HSPGs and their subsequent outcomes has been limited by the absence of a detailed analysis of HS species in cartilage. In this study, we characterize the distribution and variety of HS species in developing cartilage of normal mice. Cryo-sections of femur and tibia from normal mouse embryos were evaluated using immunostaining techniques. A panel of unique phage display antibodies specific to particular HS species were employed and visualized with secondary antibodies conjugated to Alexa-fluor dyes. Confocal microscopy demonstrates that HS species are dynamic structures within developing growth plate cartilage and the perichondrium. GlcNS6S-IdoUA2S-GlcNS6S species are down regulated and localization of GlcNS6S-IdoUA-GlcNS6S species within the hypertrophic zone of the growth plate is lost during normal development. Regional differences in HS structures are present within developing growth plates, implying that interactions with and responses to HS-binding proteins also may display regional specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  • Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y (1999) Perlecan is essential for cartilage and cephalic development. Nat Genet 23:354–358

    Article  PubMed  CAS  Google Scholar 

  • Ashikari S, Habuchi H, Kimata K (1995) Characterization of heparan sulfate oligosaccharides that bind to hepatocyte growth factor. J Biol Chem 270:29586–29593

    Article  PubMed  CAS  Google Scholar 

  • Atha DH, Stephens AW, Rimon A, Rosenberg RD (1984a) Sequence variation in heparin octasaccharides with high affinity for antithrombin III. Biochemistry 23:5801–5812

    Article  CAS  Google Scholar 

  • Atha DH, Stephens AW, Rosenberg RD (1984b) Evaluation of critical groups required for the binding of heparin to antithrombin. Proc Natl Acad Sci USA 81:1030–1034

    Article  CAS  Google Scholar 

  • Axelsson S, Holmlund A, Hjerpe A (1992) Glycosaminoglycans in normal and osteoarthrotic human temporomandibular joint disks. Acta Odontol Scand 50:113–119

    Article  PubMed  CAS  Google Scholar 

  • Baeg GH, Perrimon N (2000) Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila. Curr Opin Cell Biol 12:575–580

    Article  PubMed  CAS  Google Scholar 

  • Bernard MA, Hogue DA, Cole WG, Sanford T, Snuggs MB, Montufar-Solis D, Duke PJ, Carson DD, Scott A, Van Winkle WB, Hecht JT (2000) Cytoskeletal abnormalities in chondrocytes with EXT1 and EXT2 mutations. J Bone Miner Res 15:442–450

    Article  PubMed  CAS  Google Scholar 

  • Bullock SL, Fletcher JM, Beddington RS, Wilson VA (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev 12:1894–1906

    Article  PubMed  CAS  Google Scholar 

  • Cano-Gauci DF, Song HH, Yang H, McKerlie C, Choo B, Shi W, Pullano R, Piscione TD, Grisaru S, Soon S, Sedlackova L, Tanswell AK, Mak TW, Yeger H, Lockwood GA, Rosenblum ND, Filmus J (1999) Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 146:255–264

    PubMed  CAS  Google Scholar 

  • Chimal-Monroy J, Diaz de Leon L (1999) Expression of N-cadherin, N-CAM, fibronectin and tenascin is stimulated by TGF-beta1, beta2, beta3 and beta5 during the formation of precartilage condensations. Int J Dev Biol 43:59–67

    PubMed  CAS  Google Scholar 

  • Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Dennissen MA, Jenniskens GJ, Pieffers M, Versteeg EM, Petitou M, Veerkamp JH, van Kuppevelt TH (2002) Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies. J Biol Chem 277:10982–10986

    Article  PubMed  CAS  Google Scholar 

  • Dowd CJ, Cooney CL, Nugent MA (1999) Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J Biol Chem 274:5236–5244

    Article  PubMed  CAS  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  PubMed  CAS  Google Scholar 

  • Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116–1120

    Article  PubMed  CAS  Google Scholar 

  • French MM, Smith SE, Akanbi K, Sanford T, Hecht J, Farach-Carson MC, Carson DD (1999) Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. J Cell Biol 145:1103–1115

    Article  PubMed  CAS  Google Scholar 

  • Gould SE, Upholt WB, Kosher RA (1992) Syndecan 3: a member of the syndecan family of membrane-intercalated proteoglycans that is expressed in high amounts at the onset of chicken limb cartilage differentiation. Proc Natl Acad Sci USA 89:3271–3275

    Article  PubMed  CAS  Google Scholar 

  • Guimond S, Turner K, Kita M, Ford-Perriss M, Turnbull J (2001) Dynamic biosynthesis of heparan sulphate sequences in developing mouse brain: a potential regulatory mechanism during development. Biochem Soc Trans 29:177–181

    Article  PubMed  CAS  Google Scholar 

  • Handler M, Yurchenco PD, Iozzo RV (1997) Developmental expression of perlecan during murine embryogenesis. Dev Dyn 210:130–145

    Article  PubMed  CAS  Google Scholar 

  • Hassell J, Yamada Y, Arikawa-Hirasawa E (2002) Role of perlecan in skeletal development and diseases. Glycoconj J 19:263–267

    Article  PubMed  CAS  Google Scholar 

  • Inatani M, Honjo M, Oohira A, Kido N, Otori Y, Tano Y, Honda Y, Tanihara H (2002) Spatiotemporal expression patterns of N-syndecan, a transmembrane heparan sulfate proteoglycan, in developing retina. Invest Ophthalmol Vis Sci 43:1616–1621

    PubMed  Google Scholar 

  • Inatani M, Yamaguchi Y (2003) Gene expression of EXT1 and EXT2 during mouse brain development. Brain Res Dev Brain Res 141:129–136

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    Article  PubMed  CAS  Google Scholar 

  • Jenniskens GJ, Hafmans T, Veerkamp JH, van Kuppevelt TH (2002) Spatiotemporal distribution of heparan sulfate epitopes during myogenesis and synaptogenesis: a study in developing mouse intercostal muscle. Dev Dyn 225:70–79

    Article  PubMed  CAS  Google Scholar 

  • Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Article  PubMed  CAS  Google Scholar 

  • Kirn-Safran CB, Gomes RR, Brown AJ, Carson DD (2004) Heparan sulfate proteoglycans: coordinators of multiple signaling pathways during chondrogenesis. Birth Defects Res C Embryo Today 72:69–88

    Article  PubMed  CAS  Google Scholar 

  • Kirsch T, Koyama E, Liu M, Golub EE, Pacifici M (2002) Syndecan-3 is a selective regulator of chondrocyte proliferation. J Biol Chem 277:42171–42177

    Article  PubMed  CAS  Google Scholar 

  • Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475

    Article  PubMed  CAS  Google Scholar 

  • Koyama E, Leatherman JL, Shimazu A, Nah HD, Pacifici M (1995) Syndecan-3, tenascin-C, and the development of cartilaginous skeletal elements and joints in chick limbs. Dev Dyn 203:152–162

    PubMed  CAS  Google Scholar 

  • Koyama E, Shimazu A, Leatherman JL, Golden EB, Nah HD, Pacifici M (1996) Expression of syndecan-3 and tenascin-C: possible involvement in periosteum development. J Orthop Res 14:403–412

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Yasuda Y, Li W, Bogyo M, Katz N, Gordon RE, Fields GB, Bromme D (2004) Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem 279:5470–5479

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Perrimon N (2002) Developmental roles of heparan sulfate proteoglycans in Drosophila. Glycoconj J 19:363–368

    Article  PubMed  CAS  Google Scholar 

  • Lindahl U, Thunberg L, Backstrom G, Riesenfeld J, Nordling K, Bjork I (1984) Extension and structural variability of the antithrombin-binding sequence in heparin. J Biol Chem 259:12368–12376

    PubMed  CAS  Google Scholar 

  • Morko JP, Soderstrom M, Saamanen AM, Salminen HJ, Vuorio EI (2004) Up regulation of cathepsin K expression in articular chondrocytes in a transgenic mouse model for osteoarthritis. Ann Rheum Dis 63:649–655

    Article  PubMed  CAS  Google Scholar 

  • Nakase T, Kaneko M, Tomita T, Myoui A, Ariga K, Sugamoto K, Uchiyama Y, Ochi T, Yoshikawa H (2000) Immunohistochemical detection of cathepsin D, K, and L in the process of endochondral ossification in the human. Histochem Cell Biol 114:21–27

    PubMed  CAS  Google Scholar 

  • Nicole S, Davoine CS, Topaloglu H, Cattolico L, Barral D, Beighton P, Hamida CB, Hammouda H, Cruaud C, White PS, Samson D, Urtizberea JA, Lehmann-Horn F, Weissenbach J, Hentati F, Fontaine B (2000) Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz-Jampel syndrome (chondrodystrophic myotonia). Nat Genet 26:480–483

    Article  PubMed  CAS  Google Scholar 

  • Nishida K, Inoue H, Toda K, Murakami T (1995) Localization of the glycosaminoglycans in the synovial tissues from osteoarthritic knees. Acta Med Okayama 49:287–294

    PubMed  CAS  Google Scholar 

  • Nogami K, Suzuki H, Habuchi H, Ishiguro N, Iwata H, Kimata K (2004) Distinctive expression patterns of heparan sulfate O-sulfotransferases and regional differences in heparan sulfate structure in chick limb buds. J Biol Chem 279:8219–8229

    Article  PubMed  CAS  Google Scholar 

  • Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404:725–728

    Article  PubMed  CAS  Google Scholar 

  • Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco A, Schlessinger D (1996) Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 12:241–247

    Article  PubMed  CAS  Google Scholar 

  • Princivalle M, de Agostini A (2002) Developmental roles of heparan sulfate proteoglycans: a comparative review in Drosophila, mouse and human. Int J Dev Biol 46:267–278

    PubMed  CAS  Google Scholar 

  • Rantakokko J, Aro HT, Savontaus M, Vuorio E (1996) Mouse cathepsin K: cDNA cloning and predominant expression of the gene in osteoclasts, and in some hypertrophying chondrocytes during mouse development. FEBS Lett 393:307–313

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E, Yamaguchi Y (1991) Proteoglycans as modulators of growth factor activities. Cell 64:867–869

    Article  PubMed  CAS  Google Scholar 

  • Salmivirta M, Lidholt K, Lindahl U (1996) Heparan sulfate: a piece of information. Faseb J 10:1270–1279

    PubMed  CAS  Google Scholar 

  • Sedita J, Izvolsky K, Cardoso WV (2004) Differential expression of heparan sulfate 6-O-sulfotransferase isoforms in the mouse embryo suggests distinctive roles during organogenesis. Dev Dyn 231:782–794

    Article  PubMed  CAS  Google Scholar 

  • Seghatoleslami MR, Kosher RA (1996) Inhibition of in vitro limb cartilage differentiation by syndecan-3 antibodies. Dev Dyn 207:114–119

    Article  PubMed  CAS  Google Scholar 

  • Shimazu A, Nah HD, Kirsch T, Koyama E, Leatherman JL, Golden EB, Kosher RA, Pacifici M (1996) Syndecan-3 and the control of chondrocyte proliferation during endochondral ossification. Exp Cell Res 229:126–136

    Article  PubMed  CAS  Google Scholar 

  • Shworak NW, HajMohammadi S, de Agostini AI, Rosenberg RD (2002) Mice deficient in heparan sulfate 3-O-sulfotransferase-1: normal hemostasis with unexpected perinatal phenotypes. Glycoconj J 19:355–361

    Article  PubMed  CAS  Google Scholar 

  • Tesche F, Miosge N (2004) Perlecan in late stages of osteoarthritis of the human knee joint. Osteoarthritis Cartilage 12:852–862

    Article  PubMed  CAS  Google Scholar 

  • van Kuppevelt TH, Dennissen MA, van Venrooij WJ, Hoet RM, Veerkamp JH (1998) Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 273:12960–12966

    Article  PubMed  Google Scholar 

  • Zak BM, Crawford BE, Esko JD (2002) Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta 1573:346–355

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate discussion of these data with Dr. Jin-Ping Li, and Dr. Ulf Lindahl. The authors thank Mr. Michael Alicknavitch, Dr. Kirk Czymmek, and Ms. JoAnne Julian for helpful technical assistance and suggestions. We also thank Ms. Sharron (“Sarge”) Kingston and Mrs. Doreen Anderson for outstanding assistance in preparing this work for publication. These studies were supported by NIH: R01 DE13542 (to D.D.C. and M.C.F-C.) and NIH NRSA: F32 AG20078, and NIH-P20-PR16458 (to R.R.G.) and M.C.F-C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D. Carson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, R.R., Van Kuppevelt, T.H., Farach-Carson, M.C. et al. Spatiotemporal distribution of heparan sulfate epitopes during murine cartilage growth plate development. Histochem Cell Biol 126, 713–722 (2006). https://doi.org/10.1007/s00418-006-0203-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0203-4

Keywords

Navigation