Skip to main content

Advertisement

Log in

Evidence for abnormal tau phosphorylation in early aggressive multiple sclerosis

  • Case Report
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Although progression in multiple sclerosis is pathologically dominated by neurodegeneration, the underlying mechanism is unknown. Abnormal hyperphosphorylation of tau is implicated in the aetiopathogenesis of some common neurodegenerative disorders. We recently demonstrated the association of insoluble tau with established secondary progressive MS, raising the hypothesis that its accumulation is relevant to disease progression. In order to begin to determine the temporal emergence of abnormal tau with disease progression in MS, we examined tau phosphorylation in cerebral tissue from a rare case of early aggressive MS. We report tau hyperphosphorylation occurring in multiple cell types, with biochemical analysis confirming restriction to the soluble fraction. The absence of sarcosyl-insoluble tau fraction in early disease and its presence in secondary progression raises the possibility that insoluble tau accumulates with disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CNS:

Central nervous system

LFB:

Luxol fast blue

mAb:

Monoclonal antibody

NGS:

Normal goat serum

PB:

Phosphate buffer

PBS:

Phosphate buffered saline

TX-PBS:

Triton-phosphate buffered saline

References

  1. Adams CW, Poston RN, Buk SJ (1989) Pathology, histochemistry and immunocytochemistry of lesions in acute multiple sclerosis. J Neurol Sci 92:291–306. doi:10.1016/0022-510X(89)90144-5

    Article  PubMed  CAS  Google Scholar 

  2. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351

    PubMed  CAS  Google Scholar 

  3. Anderson JM, Hampton DW, Patani R, Pryce G, Crowther RA, Reynolds R, Franklin RJ, Giovannoni G, Compston DA, Baker D, Spillantini MG, Chandran S (2008) Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis. Brain 131:1736–1748. doi:10.1093/brain/awn119

    Article  PubMed  CAS  Google Scholar 

  4. Arendt T, Stieler J, Strijkstra AM, Hut RA, Rudiger J, Van der Zee EA, Harkany T, Holzer M, Hartig W (2003) Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23:6972–6981

    PubMed  CAS  Google Scholar 

  5. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103:26–35. doi:10.1007/s004010100423

    Article  PubMed  CAS  Google Scholar 

  6. Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672. doi:10.1038/nrn2194

    Article  PubMed  CAS  Google Scholar 

  7. Bandyopadhyay B, Li G, Yin H, Kuret J (2007) Tau aggregation and toxicity in a cell culture model of tauopathy. J Biol Chem 282:16454–16464. doi:10.1074/jbc.M700192200

    Article  PubMed  CAS  Google Scholar 

  8. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468. doi:10.1002/ana.20016

    Article  PubMed  Google Scholar 

  9. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123(Pt 6):1174–1183. doi:10.1093/brain/123.6.1174

    Article  PubMed  Google Scholar 

  10. Davie CA, Barker GJ, Webb S, Tofts PS, Thompson AJ, Harding AE, McDonald WI, Miller DH (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118(Pt 6):1583–1592. doi:10.1093/brain/118.6.1583

    Article  PubMed  Google Scholar 

  11. De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121(Pt 8):1469–1477. doi:10.1093/brain/121.8.1469

    Article  PubMed  Google Scholar 

  12. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(Pt 3):393–399. doi:10.1093/brain/120.3.393

    Article  PubMed  Google Scholar 

  13. Forman MS, Zhukareva V, Bergeron C, Chin SS, Grossman M, Clark C, Lee VM, Trojanowski JQ (2002) Signature tau neuropathology in gray and white matter of corticobasal degeneration. Am J Pathol 160:2045–2053

    PubMed  CAS  Google Scholar 

  14. Gasparini L, Terni B, Spillantini MG (2007) Frontotemporal dementia with tau pathology. Neurodegener Dis 4:236–253. doi:10.1159/000101848

    Article  PubMed  Google Scholar 

  15. Goedert M (2004) Tau protein and neurodegeneration. Semin Cell Dev Biol 15:45–49. doi:10.1016/j.semcdb.2003.12.015

    Article  PubMed  CAS  Google Scholar 

  16. Goedert M, Jakes R, Crowther RA, Cohen P, Vanmechelen E, Vandermeeren M, Cras P (1994) Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein. Biochem J 301(Pt 3):871–877

    PubMed  CAS  Google Scholar 

  17. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168. doi:10.1016/0896-6273(92)90117-V

    Article  PubMed  CAS  Google Scholar 

  18. Hampton DW, Anderson J, Pryce G, Irvine KA, Giovannoni G, Fawcett JW, Compston A, Franklin RJ, Baker D, Chandran S (2008) An experimental model of secondary progressive multiple sclerosis that shows regional variation in gliosis, remyelination, axonal and neuronal loss. J Neuroimmunol 201–202:200–211. doi:10.1016/j.jneuroim.2008.05.034

    Article  PubMed  Google Scholar 

  19. Kitazawa M, Trinh DN, Laferla FM (2008) Inflammation induces tau pathology in inclusion body myositis model via glycogen synthase kinase-3beta. Ann Neurol 64:15–24. doi:10.1002/ana.21325

    Article  PubMed  CAS  Google Scholar 

  20. Luna-Munoz J, Chavez-Macias L, Garcia-Sierra F, Mena R (2007) Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. J Alzheimers Dis 12:365–375

    PubMed  CAS  Google Scholar 

  21. Magnani E, Fan J, Gasparini L, Golding M, Williams M, Schiavo G, Goedert M, Amos LA, Spillantini MG (2007) Interaction of tau protein with the dynactin complex. EMBO J 26:4546–4554. doi:10.1038/sj.emboj.7601878

    Article  PubMed  CAS  Google Scholar 

  22. Mott RT, Dickson DW, Trojanowski JQ, Zhukareva V, Lee VM, Forman M, Van Deerlin V, Ervin JF, Wang DS, Schmechel DE, Hulette CM (2005) Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias. J Neuropathol Exp Neurol 64:420–428

    PubMed  CAS  Google Scholar 

  23. Okawa Y, Ishiguro K, Fujita SC (2003) Stress-induced hyperphosphorylation of tau in the mouse brain. FEBS Lett 535:183–189. doi:10.1016/S0014-5793(02)03883-8

    Article  PubMed  CAS  Google Scholar 

  24. Schneider A, Araujo GW, Trajkovic K, Herrmann MM, Merkler D, Mandelkow EM, Weissert R, Simons M (2004) Hyperphosphorylation and aggregation of tau in experimental autoimmune encephalomyelitis. J Biol Chem 279:55833–55839. doi:10.1074/jbc.M409954200

    Article  PubMed  CAS  Google Scholar 

  25. Shriver LP, Dittel BN (2006) T-cell-mediated disruption of the neuronal microtubule network: correlation with early reversible axonal dysfunction in acute experimental autoimmune encephalomyelitis. Am J Pathol 169:999–1011. doi:10.2353/ajpath.2006.050791

    Article  PubMed  CAS  Google Scholar 

  26. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288. doi:10.1126/science.1105681

    Article  PubMed  CAS  Google Scholar 

  27. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285. doi:10.1056/NEJM199801293380502

    Article  PubMed  CAS  Google Scholar 

  28. Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967. doi:10.1212/01.wnl.0000237551.26858.39

    Article  PubMed  CAS  Google Scholar 

  29. Zhukareva V, Shah K, Uryu K, Braak H, Del Tredici K, Sundarraj S, Clark C, Trojanowski JQ, Lee VM (2002) Biochemical analysis of tau proteins in argyrophilic grain disease, Alzheimer’s disease, and Pick’s disease: a comparative study. Am J Pathol 161:1135–1141

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by the Webb Trust Fund, Husky Foundation, the Sir David Walker Trust Fund, the Medical Research Council, Wellcome Trust and MS Society of Great Britain and Northern Ireland and the National Multiple Sclerosis Society, USA. Tissue samples were supplied by the UK MS Tissue Bank, funded by the Multiple Sclerosis Society of Great Britain and Northern Ireland, registered charity 207495.

Conflict of interest statement

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharthan Chandran.

Additional information

J. M. Anderson and R. Patani are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2009_515_MOESM1_ESM.tif

Immunohistochemical and histological characterisation of control fronto-parietal tissue with no known neuropathological disease. Normal myelin staining (LFB) of a white matter tract flanked by grey matter is shown. Inset demonstrates a representative high powered image of microglia immunolabelled with HLA-DR/LN-3, which sparsely populate healthy cerebral tissue. The resting ramified state shown is in contrast to the amoeboid morphology seen in active multiple sclerosis lesions (Fig 1c). Scale bars: main image:1mm; inset: 50μm. (TIFF 1504 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.M., Patani, R., Reynolds, R. et al. Evidence for abnormal tau phosphorylation in early aggressive multiple sclerosis. Acta Neuropathol 117, 583–589 (2009). https://doi.org/10.1007/s00401-009-0515-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0515-2

Keywords

Navigation