Skip to main content
Log in

Metabolische und mitochondriale Myopathien

Metabolic and mitochondrial myopathies

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Metabolische Myopathien umfassen eine breite Krankheitsgruppe erblicher Enzymdefekte in den verschiedenen Stoffwechselwegen der Skelettmuskulatur. Sie zeigen eine ausgeprägte phänotypische Variabilität der Krankheitssymptome und unterschiedliche Manifestationsalter, wobei häufig Symptome einer Belastungsintoleranz oder permanente Paresen erhoben werden können. Manche metabolische Myopathien, insbesondere die Mitochondriopathien, gehen mit einer multisystemischen Organbeteiligung einher. Die Diagnostik muss auf den Einzelfall abgestimmt und in stufenartiger Reihenfolge erfolgen. Primär sollten Blutuntersuchungen (CK-Messungen, Muskelbelastungstests und Bestimmung des Acylcarnitin-Spektrums) erfolgen, als zweiter Schritt die Muskelbiopsie für histologische und enzymologische Untersuchungen sowie molekulargenetische Spezialuntersuchungen, wobei nicht in allen Fällen der ursächliche Enzymdefekt aufzuklären ist. Auf der anderen Seite ist gerade bei Patienten mit einer Belastungsintoleranz durch eine sorgfältige Untersuchung eine Abgrenzung gegen andere Ursachen, insbesondere psychosomatische Erkrankungen, wichtig. Bleibt diese aus, besteht die Gefahr, die Symptomatik einer metabolischen Myopathie als somatoforme Störung einzustufen. Die Therapie ist meist symptomorientiert auszurichten, lediglich die Pompe-Erkrankung ist mit einer Enzymersatztherapie kausal behandelbar.

Abstract

Metabolic myopathies include a broad group of diseases involving inherited enzyme defects in the various metabolic pathways and skeletal musculature. They show an extensive phenotypic variability of symptoms and different ages of manifestation. Symptoms often included intolerance to duress or permanent paresis. Some forms of metabolic myopathy, in particular mitochondriopathy, are associated with multsystemic organ participation. The diagnostics must be adjusted to individual cases and carried out in stages. Primary investigations should include blood parameters (e.g. creatine kinase measurement, muscle load tests and determination of the acylcarnitine spectrum) and a second step includes muscle biopsy for histological and enzyme investigations and special molecular genetic tests although the causative enzyme defect cannot be clarified in every case. On the other hand by means of a thorough investigation it is particularly important in patients with load intolerance to differentiate between other causes, in particular psychosomatic diseases. If this is not done there is a danger of classifying the symptoms of a metabolic myopathy as a somatoform disorder. Therapy is mostly symptom-oriented as Pompe disease is the only one which can be treated with enzyme replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Abbreviations

AMP:

Adenosinmonophosphat

ATP:

Adenosintriphosphat

CK:

Creatinkinase

CPT:

Carnitin-Palmityl-Transferase

CPEO:

Chronisch progressive externe Ophthalomoplegie

ETF:

Elektrontransfer-Flavoprotein

ETF:QO:

Elektrontransfer-Flavoprotein:Ubiquinon-Oxidoreduktase

GAA:

α-1,4-Glukosidase

GSD:

Glykogenspeicherkrankheit

LDH:

Lactatdehydrogenase

MADD:

Multipler Acyl-CoA-Dehydrogenase-Mangel

MCAD:

Medium-chain-Acyl-CoA-Dehydrogenase

MCT:

Medium-chain-Triglyzeride

MELAS:

Mitochondriale Enzephalomyopathie mit Laktatazidosen und schlaganfallähnlichen Episoden

MERRF:

Myoklonusepilepsie mit „ragged-red fibers“

MNGIE:

Mitochondriale neurogastrointestinale Enzephalomyopathie

mtDNA:

Mitochondriale DNA

PCr:

Phosphokreatin

PFK:

Phosphofructokinase

PNP:

Polyneuropathie

SANDO:

Sensible Ataxia, Neuropathie, Dysarthrie, Ophthalmoplegie

VLCAD:

Very-long-chain-Acyl-CoA-Dehydrogenase

Literatur

  1. Andersen ST, Vissing J (2008) Carbohydrate- and protein-rich diets in McArdle disease: effect on exercise capacity. J Neurol Neurosurg Psychiatry 79:1359–1363

    Article  PubMed  CAS  Google Scholar 

  2. Andersen ST, Haller RG, Vissing J (2008) Effect of oral sucrose shortly before exercise on work capacity in McArdle disease. Arch Neurol 65:786–789

    Article  PubMed  Google Scholar 

  3. Bau V, Deschauer M, Zierz S (2009) Chronisch progressive externe Ophthalmoplegie – Symptom oder Syndrom? Klin Monatsbl Augenheilkd 226:822–828

    Article  PubMed  CAS  Google Scholar 

  4. Bonnefont JP, Bastin J, Behin A, Djouadi F (2009) Bezafibrate for an inborn mitochondrial beta-oxidation defect. N Engl J Med 360:838–840

    Article  PubMed  CAS  Google Scholar 

  5. Busch V, Gempel K, Hack A et al (2005) Treatment of glycogenosis type V with ketogenic diet. Ann Neurol 58:341

    Article  PubMed  Google Scholar 

  6. Deschauer M, Müller T, Wieser T et al (2001) Hearing impairment is common in various phenotypes of the mitochondrial DNA A3243G mutation. Arch Neurol 58:1885–1888

    Article  PubMed  CAS  Google Scholar 

  7. Deschauer M, Wieser T, Zierz S (2005) Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol 62:37–41

    Article  PubMed  Google Scholar 

  8. Deschauer M, Swalwell H, Strauss M et al (2006) Novel mitochondrial tRNAPhe gene mutation associated with late-onset neuromuscular disease. Arch Neurol 63:902–905

    Article  PubMed  Google Scholar 

  9. Deschauer M, Morgenroth A, Joshi PR et al (2007) Analysis of spectrum and frequencies of mutations in McArdle disease: identification of 13 novel mutations. J Neurol 254:797–802

    Article  PubMed  CAS  Google Scholar 

  10. DiMauro S, Lamperti C (2001) Muscle glycogenoses. Muscle Nerve 24:984–999

    Article  PubMed  CAS  Google Scholar 

  11. Gempel K, Kiechl S, Hofmann S et al (2002) Screening for carnitine palmitoyltransferase II deficiency by tandem mass spectrometry. J Inherit Metab Dis 25:17–27

    Article  PubMed  CAS  Google Scholar 

  12. Gempel K, Topaloglu H, Talim B et al (2007) The myopathic form of coenzymeQ10 deficiency is caused by mutations in the electron-transferringflavoproteindehydrogenase (ETFDH) gene. Brain 130:2037–2044

    Article  PubMed  Google Scholar 

  13. Haller RG, Wyrick MA, Tailvassalo T, Vissing J (2006) Aerobic conditioning: an effective therapy in McArdle’s disease. Ann Neurol 59:922–928

    Article  PubMed  Google Scholar 

  14. Hanisch F, Müller T, Muser A et al (2006) Lactate increase and oxygen desaturation in mitochondrial disorders – evaluation of two diagnostic screening protocols. J Neurol 253:417–423

    Article  PubMed  CAS  Google Scholar 

  15. Horvath R, Hudson G, Ferrari G et al (2006) Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain 129:1674–1684

    Article  PubMed  Google Scholar 

  16. Jeppesen TD, Schwartz M, Olsen DB et al (2006) Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain 129:3402–3412

    Article  PubMed  Google Scholar 

  17. Joshi PR, Gläser D, Schmidt S et al (2008) Molecular genetic characterization of German patients with late-onset glycogen storage disease type II. J Inherit Metab Dis 31(Suppl 2):261–265

    Article  Google Scholar 

  18. Kazemi-Esfarjani P, Skomorowska E, Jensen TD et al (2002) A nonischemic forearm exercise test for McArdle disease. Ann Neurol 52:153–159

    Article  PubMed  Google Scholar 

  19. Kishnani PS, Corzo D, Nicolino M et al (2007) Recombinant human acid alpha-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 149:89–97

    Google Scholar 

  20. Longo N, Di San Filippo CA, Pasquali M (2006) Disorders of carnitine transport and the carnitine cycle. Am J Med Genet Part C Semin Med Genet 142C:77–85

    Article  PubMed  CAS  Google Scholar 

  21. Ohkuma A, Noguchi S, Sugie H et al (2009) Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve 39:333–342

    Article  PubMed  Google Scholar 

  22. Olsen RK, Olpin SE, Andresen BS et al (2007) ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 130:2045–2054

    Article  PubMed  Google Scholar 

  23. Phoenix J, Hopkins P, Bartram C et al (1998) Effect of vitamin B6 supplementation in McArdle’s disease: a strategic case study. Neuromuscul Disord 8:210–212

    Article  PubMed  CAS  Google Scholar 

  24. Roe CR, Sweetman L, Roe DS et al (2002) Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 110:259–269

    PubMed  CAS  Google Scholar 

  25. Roe CR, Yang BZ, Brunengraber H et al (2008) Carnitine palmitoyltransferase II deficiency: successful anaplerotic diet therapy. Neurology 71:260–264

    Article  PubMed  CAS  Google Scholar 

  26. Taivassalo T, Gardner JL, Taylor RW et al (2006) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 29:3391–3401

    Article  Google Scholar 

  27. Taylor RW, Schaefer AM, Barrin MJ et al (2004) The diagnosis of mitochondrial muscle disease. Neuromuscul Disord 14:237–245

    Article  PubMed  Google Scholar 

  28. Van der Ploeg AT, Barohn R, Carlson L et al (2010) Open-label extension study following the Late-onset Treatment Study (LOTS) of alglucosidase alfa. Mol Genet Metab 107:456–461

    Google Scholar 

  29. Vorgerd M, Grehl T, Jager M et al (2000) Creatine therapy in myophosphorylase deficiency (McArdle’s disease). A placebo controlled crossover trial. Arch Neurol 57:956–963

    Article  PubMed  CAS  Google Scholar 

  30. Vorgerd M, Zange J, Kley R et al (2002) Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle’s disease: double-blind, placebo-controlled crossover trial. Arch Neurol 59:97–101

    Article  PubMed  Google Scholar 

  31. Vorgerd M, Deschauer M (2011) Treatment and management of hereditary metabolic myopathies. In: Bertorini TE (Hrsg) Neuromuscular disorders. Treatment and management. Elsevier, Philadelphia, S 409–429

  32. Bau V, Deschauer M, Zierz S (2009) Chronisch progressive externe Ophthalmoplegie – Symptom oder Syndrom? Klin Monatsbl Augenheilkd 226:822–828

    Article  PubMed  CAS  Google Scholar 

  33. Deschauer M (2003) Mitochondriale Enzephalomyopathien. Psychoneuro 29:108–112

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seinen Koautor auf folgende Beziehungen hin: Die Autoren erhielten in den vergangenen 3 Jahren Honorare für Vortragstätigkeiten und Fortbildungen von Genzyme GmbH, Neu-Isenburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vorgerd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorgerd, M., Deschauer, M. Metabolische und mitochondriale Myopathien. Z. Rheumatol. 72, 242–254 (2013). https://doi.org/10.1007/s00393-012-1082-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-012-1082-9

Schüsselwörter

Schlüsselwörter

Navigation