Skip to main content
Log in

The visual ecology of fiddler crabs

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

With their eyes on long vertical stalks, their panoramic visual field and their pronounced equatorial acute zone for vertical resolving power, the visual system of fiddler crabs is exquisitely tuned to the geometry of vision in the flat world of inter-tidal mudflats. The crabs live as burrow-centred grazers in dense, mixed-sex, mixed-age and mixed-species colonies, with the active space of an individual rarely exceeding 1 m2. The full behavioural repertoire of fiddler crabs can thus be monitored over extended periods of time on a moment to moment basis together with the visual information they have available to guide their actions. These attributes make the crabs superb subjects for analysing visual tasks and the design of visual processing mechanisms under natural conditions, a prerequisite for understanding the evolution of visual systems. In this review we show, on the one hand, how deeply embedded fiddler crab vision is in the behavioural and the physical ecology of these animals and, on the other hand, how their behavioural options are constrained by their perceptual limitations. Studying vision in fiddler crabs reminds us that vision has a topography, that it is context-dependent and pragmatic and that there are perceptual limits to what animals can know and therefore care about.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Altevogt R (1959) Ökologische und ethologische Studien an Europas einziger Winkerkrabbe Uca tangeri Eydoux. Z Morph Ökol Tiere 48:123–146

    Article  Google Scholar 

  • Arikawa K, Kinoshita M, Stavenga DG (2004) Color vision and retinal organization in butterflies. In Prete FR (ed) Complex worlds from simpler nervous systems. MIT, Cambridge, pp 193–219

    Google Scholar 

  • Aspey WP (1971) Inter-species sexual discrimination and approach-avoidance confict in two species of fiddler crabs, Uca pugnax and Uca pugilator. Anim Behav 19:669–676

    Google Scholar 

  • Backwell PRY, Jennions MD (2004) Coalition among male fiddler crabs. Nature 430:417

    Article  PubMed  CAS  Google Scholar 

  • Backwell PRY, Passmore NI (1996) Time constraints and multiple choice criteria in the sampling behaviour and mate choice of the fiddler crab, Uca annulipes. Behav Ecol Sociobiol 38:407–416

    Article  Google Scholar 

  • Backwell PRY, Ohara PD, Christy JH (1998a) Prey availability and selective foraging in shorebirds. Anim Behav 55:1659–1667

    Article  Google Scholar 

  • Backwell PRY, Jennions M, Passmore N, Christy J (1998b) Synchronized courtship in fiddler crabs. Nature 391:31–32

    Article  CAS  Google Scholar 

  • Backwell PRY, Jennions MD, Christy JH, Passmore NI (1999) Female choice in the synchronously waving fiddler crab Uca annulipes. Ethology 105:415–421

    Article  Google Scholar 

  • Baddeley R (2000) Introductory information theory and the brain. In Baddeley R, Hancock P, Földiak P (eds) Information theory and the brain. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Baddeley R, Abbott LF, Booth MC, Sengpiel F, Freeman T, Wakeman EA, Rolls ET (1997) Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc R Soc Lond B 264:1775–1783

    Article  CAS  Google Scholar 

  • Barnes WJP, Johnson AP, Horseman GB, Macauley MWS (2002) Computer-aided studies of vision in crabs. Mar Freshw Behav Physiol 35:37–56

    Article  Google Scholar 

  • Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J (2005) Responses of blowfly motion sensitive neurons to reconstructed optic flow along outdoor flight paths. J Comp Physiol A 191:1143–1155

    Article  CAS  Google Scholar 

  • Bouskila A, Blumstein DT (1992) Rules of thumb for predation hazard assessment: predictions from a dynamical model. Am Nat 139:161–176

    Article  Google Scholar 

  • Burford FRL, McGregor PK, Oliviera RF (1998) Chorusing by male European fiddler crabs, Uca tangeri: a study of visual communication networks. Acta Ethol 1:33–41

    Google Scholar 

  • Burford FRL, McGregor PK, Oliviera RF (2000) Response of fiddler crabs (Uca tangeri) to video playback in the field. Acta Ethol 3:55–59

    Article  Google Scholar 

  • Cannicci S, Fratini S, Vannini M (1999) Short-range homing in fiddler crabs (Ocypodidae, Genus Uca): a homing mechanism not based on local visual landmarks. Ethology 105:867–880

    Article  Google Scholar 

  • Christy JH (1983) Female choice in the resource-defense mating system of the sand fiddler crab, Uca pugilator. Behav Ecol Sociobiol 12:169–180

    Article  Google Scholar 

  • Christy JH (1995) Mimicry, mate choice and the sensory trap hypothesis. Am Nat 146:171–181

    Article  Google Scholar 

  • Christy JH, Salmon M (1984) Ecology and evolution of mating systems of fiddler crabs (Genus Uca). Biol Rev 59:483–509

    Article  Google Scholar 

  • Christy JH, Salmon M (1991) Comparative studies of reproductive behaviour in mantis shrimps and fiddler crabs. Am Zool 31:329–337

    Google Scholar 

  • Christy JH, Schober UM (1994) A test for resource-defence mating in the fiddler crab Uca beebei. Anim Behav 48:795–802

    Article  Google Scholar 

  • Christy JH, Backwell PRY, Goshima S, Kreuter T (2002) Sexual selection for structure building by courting male fiddler crabs: an experimental study of behavioral mechanisms. Behav Ecol 13:366–374

    Article  Google Scholar 

  • Christy JH, Backwell PRY, Schober U (2003a) Interspecific attractiveness of structures built by courting male fiddler crabs: experimental evidence of a sensory trap. Behav Ecol Sociobiol 53:84–91

    Google Scholar 

  • Christy JH, Baum JK, Backwell PRY (2003b) Attractiveness of sand hoods built by courting male fiddler crabs, Uca musica: test of a sensory trap hypothesis. Anim Behav 66:89–94

    Article  Google Scholar 

  • Collett TS, Harkness LIK (1982) Depth vision in animals. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behaviour. MIT, Cambridge, pp 111–176

    Google Scholar 

  • Collin SP, Pettigrew JD (1988a) Retinal topography in reef teleosts. I. Some species with well-developed areae but poorly-developed streaks. Brain Behav Evol 31:269–282

    CAS  Google Scholar 

  • Collin SP, Pettigrew JD (1988b) Retinal topography in reef teleosts. II. Some species with prominent horizontal streaks and high-density areae. Brain Behav Evol 31:283–295

    CAS  Google Scholar 

  • Crane J (1957) Basic patterns of display in fiddler crabs (Ocypodidae, Genus Uca). Zoologica 42:68–82

    Google Scholar 

  • Crane J (1975) Fiddler crabs of the world. Princeton University Press, Princeton

    Google Scholar 

  • Dahmen H (1991) Eye specialisation in water striders: An adaptation to life in a flat world. J Comp Physiol A 169:623–632

    Article  Google Scholar 

  • David SV, Vinje WE, Gallant JL (2004) Natural stimulus statistics alter the receptive field structure of V1 neurons. J Neurosci 6991–7006

  • deRivera CE (2005) Long searches for male-defended breeding burrows allow female fiddler crabs, Uca crenulata, to release larvae on time. Anim Behav 70:289–297

    Article  Google Scholar 

  • deRivera CE, Vehrencamp SL (2001) Male versus female mate searching in fiddler crabs: A comparative analysis. Behav Ecol 12:182–191

    Article  Google Scholar 

  • deRivera CE, Backwell PRY, Christy JH, Vehrencamp SL (2003) Density affects female and male mate searching in the fiddler crab, Uca beebei. Behav Ecol Sociobiol 53:72–83

    Google Scholar 

  • Detto T, Zeil J, Magrath R, Hunt S (2004) Sex, size and colour in the semaphore crab Heloecius cordiformis. J Exp Mar Biol Ecol 302:1–15

    Article  Google Scholar 

  • Eckert MP, Buchsbaum G (1993) Effect of tracking strategies on the velocity structure of two-dimensional image sequences. J Opt Soc Am A 10:1993–1996

    Article  Google Scholar 

  • Eckert MP, Zeil J (2001) Towards an ecology of motion vision. In Zanker JM, Zeil J (eds) Motion vision: computational, neural and ecological constraints. Springer, Berlin Heidelberg New York, pp 333–369

    Google Scholar 

  • Ens BJ, Klaassen M, Zwarts L (1993) Flocking and feeding in the fiddler crab (Uca tangeri): Prey availability as risk-taking behaviour. Neth J Sea Res 31:477–494

    Article  Google Scholar 

  • Fernández-Juricic E, Erichsen JT, Kacelnik A (2004) Visual perception and social foraging in birds. Trends Ecol Evol 19:25–31

    Article  PubMed  Google Scholar 

  • Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4:2379–2394

    PubMed  CAS  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Riverside, Cambridge

    Google Scholar 

  • von Hagen H-O (1962) Freilandstudien zur Sexual- und Fortpflanzungsbiologie von Uca tangeri in Andalusien. Z Morphol Ökol Tiere 51:611–725

    Article  Google Scholar 

  • von Hagen H-O (1967) Nachweis einer kinästhetischen Orientierung bei Uca rapax. Z Morphol Ökol Tiere 58:301–320

    Article  Google Scholar 

  • von Hagen H-O (1970) Zur Deutung langstieliger und gehörnter Augen bei Ocypodiden (Decapoda, Brachyura). Forma et functio 2:13–57

    Google Scholar 

  • von Hagen H-O (1984) Visual and acoustic display in Uca mordax and U. burgersi, sibling species of neotropical fiddler crabs. II. Vibration signals. Behaviour 91:204–228

    Google Scholar 

  • von Hagen H-O (1993) Waving displays in females of Uca polita and of other Australian fiddler crabs. Ethology 93:3–20

    Article  Google Scholar 

  • van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M (2005) Function and coding in the blowfly H1 neuron during naturalistic optic flow. J Neurosci 25:4343–4352

    Article  PubMed  CAS  Google Scholar 

  • Hemmi JM (2005a) Predator avoidance in fiddler crabs: 1 Escape decisions in relation to the risk of predation. Anim Behav 69:603–614

    Article  Google Scholar 

  • Hemmi JM (2005b) Predator avoidance in fiddler crabs: 2 The visual cues. Anim Behav 69:615–625

    Article  Google Scholar 

  • Hemmi JM, Grünert U (1999) Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii). Vis Neurosci 16:291–302

    Article  PubMed  CAS  Google Scholar 

  • Hemmi JM, Zeil J (2001) Habituation and the categorisation of significant events in the visual world of fiddler crabs. In: International invertebrate vision conference, Lund, Sweden

  • Hemmi JM, Zeil J (2003a) Robust judgement of inter-object distance by an arthropod. Nature 421:160–103

    Article  CAS  Google Scholar 

  • Hemmi JM, Zeil J (2003b) Burrow surveillance in fiddler crabs. I. Description of behaviour. J Exp Biol 206:3935–3950

    Article  Google Scholar 

  • Hemmi JM, Zeil J (2003c) Burrow surveillance in fiddler crabs. II. The sensory cues. J Exp Biol 206:3951–3961

    Article  Google Scholar 

  • Hemmi JM, Zeil J (2005) Animals as prey: sensory-motor abilities and flexibility of behaviour in an arthropod. Mar Ecol Prog Ser 287:274–278

    Google Scholar 

  • Herrnkind WF (1983) Movement patterns and orientation. In Vernberg FJ, Vernberg WB (eds) The biology of Crustacea, vol 7. Academic, New York, pp 41–105

  • Horch K, Salmon M, Forward R (2002) Evidence for a two pigment visual system in the fiddler crab, Uca thayeri. J Comp Physiol A 188:493–499

    Article  CAS  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York, pp 613–756

  • Hugie DM (2004) A waiting game between the black-bellied plover and its fiddler crab prey. Anim Behav 67:823–831

    Article  Google Scholar 

  • Hyatt GW (1977a) Field studies of size-dependent changes in waving display and other behavior in the fiddler crab, Uca pugilator (Brachyura, Ocypodidae). Mar Behav Physiol 4:283–292

    Google Scholar 

  • Hyatt GW (1977b) Quantitative analysis of size-dependent variation in the fiddler crab waving display (Uca pugilator, Brachyura, Ocypodidae). Mar Behav Physiol 5:19–36

    Google Scholar 

  • Hyatt GW, Salmon M (1979) Combat in the fiddler crabs Uca pugilator and U. pugnax: a quantitative analysis. Behaviour 65:182–210

    Google Scholar 

  • Isibarne OO, Martinez MM (1999) Predation on the Southwestern Atlantic fiddler crab (Uca uruguayensis) by migratory shorebirds (Pluvialis dominica, P. squatarola, Arenaria interpres, and Numenius phaeopus). Estuaries 22:47–54

    Google Scholar 

  • Jennions MD, Backwell PRY (1996) Residency and size affect fight duration and outcome in the fiddler crab Uca annulipes. Biol J Linn Soc 57:293–306

    Article  Google Scholar 

  • Jennions MD, Backwell PRY (1998) Variation in courtship rate in the fiddler crab Uca annulipes: is it related to male attractiveness? Behav Ecol 9:605–611

    Article  Google Scholar 

  • Jennions MD, Petrie M (1997) Variation in mate choice and mating preferences: a review of causes and consequences. Biol Rev Cambridge Phil Soc 72:283–327

    Article  CAS  Google Scholar 

  • Jennions MD, Backwell PRY, Murai M, Christy JH (2003) Hiding behaviour in fiddler crabs: how long should prey hide in response to a potential predator? Anim Behav 66:251–257

    Article  Google Scholar 

  • Johnson AP, Barnes WJP, MacCauley MWS (2004a) Effects of light intensity and pattern contrast on the ability of the land crab, Cardisoma guanhumi, to separate optic flow components. Vis Neurosci 21:895–904

    Article  Google Scholar 

  • Johnson AP, Barnes WJP, MacCauley MWS (2004b) Local mechanisms for the separtion of optic flow-field components in the land crab, Cardisoma guanhumi: A role for motion parallax? Vis Neurosci 21:905–911

    Article  Google Scholar 

  • Kayser C, Körding KP, König P (2004) Processing of complex stimuli and natural scenes in the visual cortex. Curr Opin Neurobiol 14:468–473

    Article  PubMed  CAS  Google Scholar 

  • Kern R, van Hateren H, Michaelis C, Lindemann JP, Egelhaaf M (2005) Function of a fly motion-sensitive neuron matches eye movements during free flight. PLOS 3(6):e171

    Article  CAS  Google Scholar 

  • Koenderink JJ, van Doorn AJ (1987) Facts on optic flow. Biol Cybernet 56:247–254

    Article  CAS  Google Scholar 

  • Koga T, Backwell PRY, Jennions MD, Christy JH (1998) Elevated predation risk changes mating behaviour and courtship in a fiddler crab. Proc R Soc Lond B 265:1385–1390

    Article  Google Scholar 

  • Koops MA (2004) Reliability and the value of information. Anim Behav 67:103–111

    Article  Google Scholar 

  • Körding KP, Kayser C, Einhäuser W, König P (2004) How are complex cell properties adapted to the statistics of natural stimuli? J Neurophysiol 91:206–212

    Article  PubMed  Google Scholar 

  • Korte R (1965) Durch polarisiertes Licht hervorgerufene Optomotorik bei Uca tangeri. Experientia 21:98

    Article  PubMed  Google Scholar 

  • Kunze P (1963) Der Einfluss der Grösse bewegter Felder auf den optokinetischen Augennystagmus der Winkerkrabbe (Uca pugnax). Ergeb Biol 26:55–62

    Google Scholar 

  • Land MF (1989) Variations in the structure and design of compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 90–111

    Google Scholar 

  • Land MF (1997) Visual acuity in insects. Ann Rev Entomol 42:147–177

    Article  CAS  Google Scholar 

  • Land MF (1999) The roles of head movements in the search and capture strategy of a tern (Aves, Laridae). J Comp Physiol A 184:265–272

    Article  Google Scholar 

  • Land MF, Collett TS (1997) A survey of active vision in invertebrates. In: Srinivasan MV, Venkatesh S (eds) From living eyes to seeing machines. Oxford University Press, Oxford, pp 16–36

    Google Scholar 

  • Land MF, Layne JE (1995a) The visual control of behaviour in fiddler crabs I. Resolution, thresholds and the role of the horizon. J Comp Physiol A 177:81–90

    Google Scholar 

  • Land MF, Layne JE (1995b) The visual control of behaviour in fiddler crabs II. Tracking control systems in courtship and defence. J Comp Physiol A 177:91–103

    Google Scholar 

  • Layne JE (1998) Retinal location is the key to identifying predators in fiddler crabs (Uca pugilator). J Exp Biol 201:2253–2261

    PubMed  CAS  Google Scholar 

  • Layne J, Land MF, Zeil J (1997) Fiddler crabs use the visual horizon to distinguish predators from conspecifics: a review of the evidence. J Mar Biol 77:43–54

    Google Scholar 

  • Layne JE, Barnes WJP, Duncan LMJ (2003a) Mechanisms of homing in the fiddler crab Uca rapax: 1. Spatial and temporal characteristics of a system of small-scale navigation. J Exp Biol 206:4413–4423

    Article  Google Scholar 

  • Layne JE, Barnes WJP, Duncan LMJ (2003b) Mechanisms of homing in the fiddler crab Uca rapax: 2: Information sources and frame of reference for a path integration system. J Exp Biol 206:4425–4442

    Article  Google Scholar 

  • Lima SL (2002) Putting predators back into behavioral predator-prey interactions. Trends Ecol Evol 17:70–75

    Article  Google Scholar 

  • Luttbeg B (2002) Assessing the robustness and optimality of alternative decision rules with varying assumptions. Anim Behav 63:805–814

    Article  Google Scholar 

  • Luttbeg B, Schmitz OJ (2000) Predator and prey models with flexible individual behavior and imperfect information. Am Nat 155:669–683

    Article  PubMed  Google Scholar 

  • Lynch DK, Livingston W (1995) Color and light in nature. Cambridge University Press, Cambridge

    Google Scholar 

  • MacFarlane GR, King SA (2002) Observer presence influences behaviour of the semaphore crab, Heloecius cordiformis. Anim Behav 63:1191–1194

    Article  Google Scholar 

  • McLain DK, Pratt AE, Kirschstein K (2005) Predator-driven fragmentation of fiddler crab droves into selfish miniherds of biased composition. J Exp Mar Biol Ecol 315:1–15

    Article  Google Scholar 

  • McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, Knierim JJ, Kudrimoti H, Qin Y, Skaggs WE, Suster M, Weaver KL (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. In: Wehner R, Lehrer M, Harvey WR (eds) Navigation. J Exp Biol 199:173–185

  • Müller W (1989) Untersuchungen zur akustisch-vibratorischen Kommunikation und Ökologie tropischer und subtropischer Winkerkrabben. Zool Jhg Abt Syst Ökol Geogr Tiere 116:47–114

    Google Scholar 

  • Murai M, Koga T, Yong H-S (2002) The assessment of female reproductive state during courtship and scramble competition in the fiddler crab, Uca paradussumieri. Behav Ecol Sociobiol 52:137–142

    Article  Google Scholar 

  • Nalbach H-O (1990a) Multisensory control of eyestalk orientation in decapod crustaceans: An ecological approach. J Crust Biol 10:382–399

    Google Scholar 

  • Nalbach H-O (1990b) Visually elicited escape in crabs. In: Wiese K, Krent W-D, Tautz J, Reichert H, Mulloney B (eds) Frontiers in Crustacean Neurobiology. Birkhäuser, Basel, pp 165–172

    Google Scholar 

  • Nalbach H-O, Nalbach G (1987) Distribution of optokinetic sensitivity over the eye of crabs: its relation to habitat and possible role in flow-field analysis. J Comp Physiol A 160:127–135

    Article  Google Scholar 

  • Nalbach H-O, Zeil J, Forzin L (1989) Multisensory control of eye-stalk orientation in space: Crabs from different habitats rely on different senses. J Comp Physiol A 165:643–649

    Article  Google Scholar 

  • Nunnemacher RF (1966) The fine structure of optic tracts of Decapoda. In Bernhard CG (ed) The functional organisation of the compound eye. Pergamon, Oxford, pp 363–376

    Google Scholar 

  • Oliveira RF, Machado JL, Jordão JM, Burford FL, Latruffe C, McGregor PK (2000) Human exploitation of male fiddler crab claws: behavioural consequences and implications for conservation. Anim Conserv 3:1–5

    Article  Google Scholar 

  • Ooi TL, Wu B, He ZJJ (2001) Distance determined by the angular declination below the horizon. Nature 414:197–200

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (1990) The rhythmic lives of crabs. Bioscience 40:352–358

    Google Scholar 

  • Passaglia CL, Dodge FA, Herzog E, Jackson S, Barlow R (1997) Deciphering a neural code for vision. Proc Natl Acad Sci USA 94:12649–12654

    Article  PubMed  CAS  Google Scholar 

  • Paul H, Barnes WJP, Varjú D (1998) Roles of eyes, leg proprioceptors and statocysts in the compensatory eye movements of freely walking land crabs (Cardisoma guanhumi). J Exp Biol 201:3395–3409

    PubMed  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems for hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Article  PubMed  CAS  Google Scholar 

  • Peters RA, Clifford CWG, Evans CS (2002) Measuring the structure of dynamic visual signals. Anim Behav 64:131–146

    Article  Google Scholar 

  • Pope D (2005) Waving in a crowd: fiddler crabs signal in networks. In: McGregor P (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 252–276

    Google Scholar 

  • Pratt AE, McLain DK, Berry AS (2005) Variation in the boldness of courting sand fiddler crabs (Uca pugilator). Ethology 111:63–76

    Article  Google Scholar 

  • Robertson JR, Fudge JA, Vermeer GK (1981) Chemical and live feeding stimulants of the sand fiddler crab, Uca pugilator (Bosc). J Exp Mar Biol Ecol 53:47–64

    Article  CAS  Google Scholar 

  • Salmon M (1965) Waving display and sound production in the courtship behavior of Uca pugilator, with comparisons to U. minax and U. pugnax. Zool NY 50:123–150

    Google Scholar 

  • Salmon M (1984) The courtship, aggression and mating system of a “primitive” fiddler crab (Uca vocans: Ocypodidae). Trans Zool Soc Lond 37:1–50

    Google Scholar 

  • Salmon M, Hyatt GW (1983) Communication. In: Vernberg FJ, Vernberg WG (eds) The biology of Crustacea, vol 7. Behavior and ecology. Academic, New York, pp 1–40

  • Salmon M, Stout JF (1962) Sexual discrimination and sound production in Uca pugilator Bosc. Zool NY 47:15–19

    Google Scholar 

  • Salmon M, Hyatt GW, McCarthy K, Costlow JD (1978) Display specificity and reproductive isolation in the fiddler crabs, Uca panacea and U. pugilator. Z Tierpsychol 48:251–276

    Google Scholar 

  • Schöne H (1968) Agonistic and sexual display in aquatic and semi-terrestrial brachyuran crabs. Am Zool 8:641–654

    Google Scholar 

  • Sedgwick HA (1983) Environment-centered representation of spatial layout: Available visual information from texture and perspective. In: Beck J, Hope B, Rosenfeld A (eds) Human and machine vision. Academic, New York, pp 425–458

    Google Scholar 

  • Shaw SR, Stowe S (1982) Photoreception. In: Atwood HL, Sandeman DC (eds) The biology of Crustacea, vol. 3. Neurobiology: structure and function. Academic, New York, pp 291–367

  • Shih H-T, Mok H-K, Chang H-W, Lee S-C (1999) Morphology of Uca formosensis Rathburn, 1921 (Crustacea: Decapoda: Ocypodidae), an endemic fiddler crab from Taiwan, with notes on its ecology. Zool Stud 38:164–177

    Google Scholar 

  • Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216

    Article  PubMed  CAS  Google Scholar 

  • Snyder AW, Menzel R, Laughlin SB (1973) Structure and function of the fused rhabdom. J Comp Physiol 87:99–135

    Article  Google Scholar 

  • Snyder AW, Bossomaier TR, Hughes A (1986) Optical image quality and the cone mosaic. Science 231:499–501

    PubMed  CAS  Google Scholar 

  • Sparks DL (2005) An argument for using ethologically “natural” behaviours as estimates of unobservable sensory processes. Focus on “Sound localization performance in the cat: The effects of restraining the head”. J Neurophysiol 93:1136–1137

    Article  PubMed  Google Scholar 

  • Srinivasan MV (1993) How insects infer range from visual motion. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 139–156

    Google Scholar 

  • Stavenga DG (2002) Colour in the eyes of insects. J Comp Physiol A 188:337–348

    Article  CAS  Google Scholar 

  • Stephens DW (1993) Learning and behavioural ecology: incomplete information and environmental predictability. In: Papaj DR, Lewis AC (eds) Insect learning: Ecological and evolutionary perspectives. Chapman & Hall, New York, pp 195–217

    Google Scholar 

  • Sturmbauer C, Levinton JS, Christy J (1996) Molecular phylogeny analysis of fiddler crabs: Test of the hypothesis of increasing behavioural complexity in evolution. Proc Natl Acad Sci USA 93:10855–10857

    Article  PubMed  CAS  Google Scholar 

  • Sztarker J, Tomsic D (2004) Binocular visual integration in the crustacean nervous system. J Comp Physiol A 190:951–962

    Google Scholar 

  • Takeda S (2003) Mass wandering in the reproductive season by the fiddler crab Uca perplexa (Decapoda: Ocypodidae). J Crust Biol 23:723–728

    Google Scholar 

  • Thurman CL (1988) Rhythmic physiological color change in crustacea: a review. Comp Biochem Physiol 91(C):171–185

    Google Scholar 

  • Tomsic D, Massoni V, Maldonado H (1993) Habituation to a danger stimulus in two semiterrestrial crabs: ontogenetic, ecological and opioid modulation correlates. J Comp Physiol A 173:621–633

    Article  Google Scholar 

  • Tomsic D, Berón de Astrada M, Sztarker J (2003) Identification of individual neurons reflecting short- and long-term visual memory in an arthropod. J Neurosci 23:8539–8546

    PubMed  CAS  Google Scholar 

  • Viscido SV, Wethey DS (2002) Quantitative analysis of fiddler crab flock movements: evidence for ‘selfish herd’ behaviour. Anim Behav 63:735–741

    Article  Google Scholar 

  • Walker I (1972) Habituation to disturbance in the fiddler crab (Uca annulipes) in its natural environment. Anim Behav 20:139–146

    Google Scholar 

  • Wehner R (1987) ‘Matched filters’—neural models of the external world. J Comp Physiol A 161:511–531

    Article  PubMed  Google Scholar 

  • Wehner R (2001) Polarization vision – a uniform sensory capacity? J Exp Biol 204:2589–2596

    PubMed  CAS  Google Scholar 

  • Weissburg M (1992) Functional analysis of fiddler crab foraging: sex-specific mechanics and constraints in Uca pugnax (Smith). J Exp Mar Biol Ecol 156:105–124

    Article  Google Scholar 

  • Welton NJ, McNamara JM, Houston AI (2003) Assessing predation risk: optimal behaviour and rules of thumb. Theor Pop Biol 64:417–430

    Article  Google Scholar 

  • Wiersma CAG, Roach JLM, Glantz RM (1982) Neural integration in the optic system. In: Sandeman DC, Atwood HL (eds) The biology of Crustacea, vol 4. Neural integration and behavior. Academic, New York, pp 1–31

  • Wolfarth B (1993) Observations on the behaviour of the European fiddler crab Uca tangeri. Mar Ecol Prog Ser 100:111–118

    Google Scholar 

  • Yamaguchi T, Tabata S (2005) Territory usage and defence of the fiddler crab, Uca lactea (De Haan) (Decapoda, Brachyura, Ocypodidae). Crustaceana 77:1055–1080

    Article  Google Scholar 

  • Zeil J (1990) Substratum slope and the alignment of acute zones in semi-terrestrial crabs (Ocypode ceratophthalmus). J Exp Biol 152:573–576

    Google Scholar 

  • Zeil J (1998) Homing in fiddler crabs (Uca lactea annulipes and Uca vomeris: Ocypodidae). J Comp Physiol A 183:367–377

    Article  Google Scholar 

  • Zeil J, Al-Mutairi M (1996) The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda). J Exp Biol 199:1569–1577

    PubMed  Google Scholar 

  • Zeil J, Hofmann M (2001) Signals from ‘crabworld’: Cuticular reflections in a fiddler crab colony. J Exp Biol 204:2561–2569

    PubMed  CAS  Google Scholar 

  • Zeil J, Layne J (2002) Path integration in fiddler crabs and its relation to habitat and social life. In: Wiese K (ed) Crustacean experimental systems in neurobiology. Springer, Berlin Heidelberg New York, pp 227–247

    Google Scholar 

  • Zeil J, Zanker JM (1997) A glimpse into crabworld. Vis Res 37:3417–3426

    Article  PubMed  CAS  Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1986) Eyes, eye stalks and the visual world of semi-terrestrial crabs. J Comp Physiol A 159:801–811

    Article  Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1989) Spatial vision in a flat world: Optical and neural adaptations in arthropods. In: Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum, New York, pp 123–137

    Google Scholar 

  • Zeil J, Cronin T, Hemmi JM, Jordão J, Marshall J, Shashar N, Stavenga DG, Vorobyev M (2004) Reconstructing Vision in Fiddler Crabs. I: Eyes, environment and signals. In: 7th Congress of the international society for neuroethology, Nyborg, Denmark August

  • Zwarts L (1985) The winter exploitation of fiddler crabs Uca tangeri by waders in Guinea-Bissau. Ardea 73:3–12

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Swiss Science Foundation to JMH, from the Human Frontiers Science Program to JZ, from the Centre for Visual Sciences to JMH and JZ, from the Australian National University’s Major Equipment fund and the Research School of Biological Sciences Biotechnology fund to JZ. We thank Waltraud Pix for her keen eye for fiddler crabs and her support with fieldwork and Marilyn Ball for sharing the casi, as well as Martin Hofmann and Katharina Siebke for their support in maintaining it and in analysing data. We are grateful to Ali Alkaladi, Tanya Detto, Martin How, and Doekele Stavenga for allowing us to use unpublished data. We thank Pat Backwell, Norbert Boeddeker, Tanya Detto, Martin How, Michael Jennions, Richard Peters, Waltraud Pix and Mandyam Srinivasan for their constructive comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Zeil.

Additional information

For Mike Land

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeil, J., Hemmi, J.M. The visual ecology of fiddler crabs. J Comp Physiol A 192, 1–25 (2006). https://doi.org/10.1007/s00359-005-0048-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0048-7

Keywords

Navigation