Skip to main content
Log in

Performance evaluation of a near infrared QEPAS based ethylene sensor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was evaluated for the detection of trace levels of ethylene at atmospheric pressure using a fiber coupled DFB diode laser emitting in the 1.62 µm spectral range. A noise-equivalent QEPAS signal of ∼4 ppm C2H4 was achieved for a 0.7 s data acquisition time using wavelength-modulation with a second-harmonic detection scheme on the strongest C2H4 absorption peak at 6177.14 cm−1 with an average optical power of ∼15 mW. Improved detection sensitivity of 0.5 and 0.3 ppm C2H4 (1σ) was demonstrated using longer averaging time of 70 and 700 s, respectively. Important characteristics for the QEPAS based sensor operation in real-world conditions are presented, particularly the influence of external temperature variations. Furthermore, the response time of the ethylene sensor was measured in different configurations and it is shown that the QEPAS technique can provide a response time in a few seconds range even without active gas flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Kosterev, Y.U. Bakhirkin, R.F. Curl, F.K. Tittel, Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 27(21), 1902–1904 (2002)

    Article  ADS  Google Scholar 

  2. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76, 043105 (2005)

    Article  ADS  Google Scholar 

  3. A.K.Y. Ngai, S.T. Persijni, D. Lindsay, A.A. Kosterev, P. Groß, C.J. Lee, S.M. Cristescu, F.K. Tittel, K.-J. Boller, F.J.M. Harren, Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing. Appl. Phys. B 89, 123–128 (2007)

    Article  ADS  Google Scholar 

  4. A.A. Kosterev, F.K. Tittel, Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser. Appl. Opt. 43(33), 6213–6217 (2004)

    Article  ADS  Google Scholar 

  5. G. Wysocki, A.A. Kosterev, F.K. Tittel, Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 µm. Appl. Phys. B 85(2–3), 301–306 (2006)

    Article  ADS  Google Scholar 

  6. A.A. Kosterev, T.S. Mosely, F.K. Tittel, Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN. Appl. Phys. B 85(2–3), 295–300 (2006)

    Article  ADS  Google Scholar 

  7. A.A. Kosterev, F.K. Tittel, QEPAS based detection of H2S and CO2 using a near-IR DFB diode laser, in 6th International Conference on Tunable Diode Laser Spectroscopy, July 9–13, 2007, Reims, France

  8. M.D. Wojcik, M.C. Phillips, B.D. Cannon, M.S. Taubman, Gas-phase photoacoustic sensor at 8.41 µm using quartz tuning forks and amplitude-modulated quantum cascade lasers. Appl. Phys. B 85(2–3), 307–313 (2006)

    Article  ADS  Google Scholar 

  9. M.C. Phillips, T.L. Myers, M.D. Wojcik, B.D. Cannon, External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features. Opt. Lett. 32(9), 1177–1179 (2006)

    Article  ADS  Google Scholar 

  10. R. Lewicki, G. Wysocki, A.A. Kosterev, F.K. Tittel, QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 µm. Opt. Express 15(12), 7357–7366 (2007)

    Article  ADS  Google Scholar 

  11. P. Kluczynski, J. Gustafsson, Å.M. Lindberg, O. Axner, Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals. Spectrochim. Acta, Part B 56, 1277–1354 (2001)

    Article  ADS  Google Scholar 

  12. S. Schilt, L. Thévenaz, Ph. Robert, Wavelength modulation spectroscopy: combined frequency and intensity laser modulation. Appl. Opt. 42, 6728–6738 (2003)

    Article  ADS  Google Scholar 

  13. S.W. Sharpe, T.H. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Gas-phase database for quantitative infrared spectroscopy. Appl. Spectrosc. 58, 1452–1461 (2004)

    Article  ADS  Google Scholar 

  14. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, The HITRAN 2004 molecular spectroscopic database. J. Quantum Spectrosc. Radiat. Transf. 96, 139–204 (2005)

    Article  ADS  Google Scholar 

  15. A. Veres, Z. Bozóki, Á. Mohácsi, M. Szakáll, G. Szabó, External cavity diode laser based photoacoustic detection of CO2 at 1.43 µm: the effect of molecular relaxation. Appl. Spectrosc. 57, 900–905 (2003)

    Article  ADS  Google Scholar 

  16. S. Schilt, J.-P. Besson, L. Thévenaz, Near-infrared laser photoacoustic detection of methane: the impact of molecular relaxation. Appl. Phys. B 82(2), 319–328 (2006)

    Article  ADS  Google Scholar 

  17. J.-P. Besson, S. Schilt, L. Thévenaz, Molecular relaxation effects on hydrogen chloride photoacoustic detection. Appl. Phys. B 90(2), 191–196 (2008)

    Article  ADS  Google Scholar 

  18. A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, S. Blaser, Y. Bonetti, L. Hvozdara, Photoacoustic phase shift as a chemically selective spectroscopic parameter. Appl. Phys. B 78, 673–676 (2004)

    Article  ADS  Google Scholar 

  19. Y.L. Hoo, W. Jin, C. Shi, H.L. Ho, D.N. Wang, S.C. Ruan, Design and modeling of a photonic crystal fiber gas sensor. Appl. Opt. 42(18), 3509–3515 (2003)

    Article  ADS  Google Scholar 

  20. N. Gayraud, L.W. Kornaszewski, J.M. Stone, J.C. Knight, D.T. Reid, D.P. Hand, W.N. MacPherson, Mid-infrared gas sensing using a photonic bandgap fiber. Appl. Opt. 47(9), 1269–1277 (2008)

    ADS  Google Scholar 

  21. S. Schilt, L. Thévenaz, Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results. Infrared Phys. Technol. 48(2), 154–162 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schilt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilt, S., Kosterev, A.A. & Tittel, F.K. Performance evaluation of a near infrared QEPAS based ethylene sensor. Appl. Phys. B 95, 813–824 (2009). https://doi.org/10.1007/s00340-008-3306-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3306-x

PACS

Navigation