Skip to main content
Log in

Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat- and mass-transfer model

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The temporal behavior of the laser-induced incandescence (LII) signal is often used for soot-particle sizing, which is possible because the cooling behavior of a laser-heated particle is dependent on the particle size. The heat- and mass-transfer model describing the temporal LII-signal behavior has in this work been extended to include the influence of the primary particle-size distribution and the spatial distribution of laser energy. When evaluating primary particle size, a monodisperse size distribution is often assumed, although it is well known that a polydisperse distribution is a better description of the real situation. In this work the impact of this assumption is investigated for Gaussian and lognormal size distributions of different widths, and the result is a significant bias towards larger particle sizes because of the higher influence of larger particles on the LII signal. Moreover, the dependence of the LII signal on the laser fluence is studied for different spatial distributions of the laser energy. The top-hat, Gaussian sheet and Gaussian beam distributions were tested and it is established that the LII signal is strongly dependent on the choice of distribution. However, in this case the influence of particle size is minor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.R. Barfknecht: Prog. Energy Combust. Sci. 9, 199 (1983)

    Article  Google Scholar 

  2. L.A. Melton: Appl. Opt. 23, 2201 (1984)

    Google Scholar 

  3. R.J. Santoro, C.R. Shaddix: in Applied Combustion Diagnostics, ed. by K. Kohse-Köinghaus, J.B. Jeffries (Taylor & Francis, London 2002) pp. 252–286

  4. P.-E. Bengtsson, M. Aldén: Appl. Phys. B 60, 51 (1995)

    Google Scholar 

  5. B. Axelsson, R. Collin, P.-E. Bengtsson: Appl. Phys. B 72, 367 (2001)

    Google Scholar 

  6. R.L. Vander Wal: Proc. Combust. Inst. 27, 59 (1998)

    Google Scholar 

  7. R.L. Vander Wal, T.M. Ticich: Appl. Opt. 38, 1444 (1999)

    Google Scholar 

  8. C.J. Dasch: Appl. Opt. 23, 2209 (1984)

    Google Scholar 

  9. D.L. Hofeldt: SAE paper 930079 (Society of Automotive Engineers, Warrendale, PA 1993)

  10. S. Will, S. Schraml, K. Bader, A. Leipertz: Appl. Opt. 37, 5647 (1998)

    Google Scholar 

  11. P. Roth, A.V. Filippov: J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  12. R.L. Vander Wal, T.M. Ticich, A.B. Stephens: Combust. Flame 116, 291 (1999)

    Article  Google Scholar 

  13. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder: J. Heat Transfer 123, 814 (2001)

    Article  Google Scholar 

  14. B.J. McCoy, C.Y. Cha: Chem. Eng. Sci. 29, 381 (1974)

    Article  Google Scholar 

  15. A.V. Filippov, D.E. Rosner: Int. J. Heat Mass Transfer 43, 127 (2000)

    Article  MATH  Google Scholar 

  16. H.A. Michelsen: J. Chem. Phys. 118, 7012 (2003)

    Article  Google Scholar 

  17. P.O. Witze, S. Hochgreb, D. Kayes, H.A. Michelsen, C.R. Shaddix: Appl. Opt. 40, 2443 (2001)

    Google Scholar 

  18. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder: in 34th Natl. Heat Transfer Conf., NHTC2000-12132, 2000, p. 1–9

  19. W.H. Dalzell, A.F. Sarofim: J. Heat Transfer 91, 100 (1969)

    Google Scholar 

  20. H.R. Leider, O.H. Krikorian, D.A. Young: Carbon 11, 555, 1973

    Article  Google Scholar 

  21. H. Bockhorn, F. Fetting, A. Heddrich: in 21st Int. Symp. Combustion (The Combustion Institute, Pittsburgh, PA 1986) pp. 1001–1012

  22. Ü.Ö. Köylü, G.M. Faeth: Combust. Flame 89, 140 (1992)

    Article  Google Scholar 

  23. B.L. Wersborg, J.B. Howard, G.C. Williams: in 14th Int. Symp. Combustion (The Combustion Institute, Pittsburgh, PA 1973) pp. 929–940

  24. T. Ni, J.A. Pinson, S. Gupta, R.J. Santoro: Appl. Opt. 34, 7083 (1995)

    Google Scholar 

  25. N.P. Tait, D.A. Greenhalgh: Ber. Bunsenges. Phys. Chem. 97, 1619 (1993)

    Google Scholar 

  26. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz: Appl. Opt. 36, 3500 (1997)

    Google Scholar 

  27. R.L. Vander Wal, T.M. Ticich, A.B. Stephens: Appl. Phys. B 67, 115 (1998)

    Article  Google Scholar 

  28. R.L. Vander Wal, M.Y. Choi: Carbon 37, 231 (1999)

    Article  Google Scholar 

  29. S. Dankers, S. Schraml, S. Will, A. Leipertz: Chem. Eng. Technol. 25, 1160 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bladh.

Additional information

PACS

02.30.Hq; 44.40.+a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bladh, H., Bengtsson , PE. Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat- and mass-transfer model. Appl Phys B 78, 241–248 (2004). https://doi.org/10.1007/s00340-003-1362-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1362-9

Keywords

Navigation